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Probing d-wave pairing correlations in the pseudogap regime of the cuprate superconductors
via low-energy states near impurities

Daniel E. Sheehy,* İnançAdagideli,† Paul M. Goldbart,‡ and Ali Yazdani§

Department of Physics and Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 6180
~Received 1 June 2001; published 21 November 2001!

The issue of probing the pseudogap regime of the cuprate superconductors, specifically with regard to the
existence and nature of superconducting pairing correlations ofd-wave symmetry, is explored theoretically. It
is shown that if thed-wave correlations believed to describe the superconducting state persist into the
pseudogap regime, but with pair-potential phase fluctuations that destroy their long-range nature, then the
low-energy quasiparticle states observed near extended impurities in the truly superconducting state should
also persist as resonances in the pseudogap regime. The scattering of quasiparticles by these phase-fluctuations
broadens what was~in the superconducting state! a sharp peak in the single-particle spectral function at low
energy, as we demonstrate within the context of a simple model. This peak and its broadening are, in principle,
accessible via scanning tunneling spectroscopy near extended impurities in the pseudogap regime. If so, such
experiments would provide a probe of the extent to whichd-wave superconducting correlations persist upon
entering the pseudogap regime, thus providing a stringent diagnostic of the phase-fluctuation scenario.
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I. INTRODUCTION

Among the challenges presented by the high-tempera
superconductors, one of the most persistent concerns
anomalous properties of thenormal state of these materials
In particular, the suppression of single-particle spec
weight around the Fermi energy1–3 for temperatures abov
the superconducting transition temperatureTc of the under-
doped cuprates indicates that the electronic behavior of th
materials deviates substantially from that of conventional
perconductors. There have been several theoretical scen
proposed to explain this so-called pseudogap behavior.4–9 In
the present paper, we shall be concerned with a partic
one of these, viz., the phase-fluctuation scenario.10–13 Ac-
cording to this scenario, superconducting correlations in
form of Cooper pairing are presumed to exist~and to be
responsible for the loss of single-particle spectral weight! for
temperaturesT below the pseudogap onset temperatureT* .
However, in the intermediate-temperature range~i.e., Tc,T
&T* ) the long-range spatial and temporal coherence in
phase of Cooper-pair wave functions~occurring forT,Tc)
is presumed to be present only up to intermediate len
scales, having been disrupted on longer length scales by
presence and motion of vortex excitations. In other wor
although long-range phase coherence is absent in it,
pseudogap regime is quantitatively distinguished from
conventional nonsuperconducting state by the presenc
substantial, residual, locald-wave pairing correlations.

Several recent experimental investigations support the
tion of the phase-fluctuation scenario as the origin
pseudogap phenomenology, including Refs. 14 and 15.
ther steps towards an understanding of the nature of
pseudogap regime would be furnished by experime
probes that are targeted towards the question of the exist
of the putative local superconducting correlations.16–19 Such
probes would have the potential to discriminate between
narios based on pairing correlations and those in which
0163-1829/2001/64~22!/224518~8!/$20.00 64 2245
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pseudogap is due to some other mode of electronic orderi4

The purpose of the present paper is to identify one s
probe: scanning-tunneling-spectroscopy~STS! measure-
ments of the single-particle spectral function near exten
impurities in the pseudogap regime.20,21

Before explaining the nature of this probe, let us pause
recall one of its essential ingredients. It is has long be
recognized22–26 that the scattering of quasiparticles betwe
states corresponding to differing signs of thed-wave pair
potential leads to the existence of low-energy states.25,26

Such scattering, and hence low-energy state formation,
curs, e.g., at suitably oriented surfaces in the cuprates, l
ing to the observed zero-bias anomaly in the tunnel
conductance.27 In the setting of impurity~rather than bound-
ary! scattering ind-wave superconductors, low-energy stat
which in this case are localized near the impurities, ha
been observed in STS experiments,28,29 and have been dis
cussed theoretically for the case of pointlike30 and
extended31,32 impurities. We remind the reader that the
states co-exist with the continuum of low-energy quasipa
cle states associated with the nodes at which thed-wave pair
potential vanishes. Distinguishing between impurity sta
and nodal states is straightforward because the former gi
peaked contribution to the spectral function whereas the c
tribution from the latter vanishes linearly at zero energy.~A
clear example of this is furnished by the data reported in R
28.!

Returning to our main task, viz., probing the pseudog
regime for pairing correlations, we now state the central id
on which the present paper is based. Let us suppose tha
pseudogap state is indeed distinguished by the presenc
local ~but not long range! d-wave pairing correlations. The
lack of long-range phase coherence in such a state un
mines the efficacy of conventional tests~such as the Meiss
ner effect! for superconducting correlations. However, t
low-energy quasiparticle states occurring near extended
purities arelocalizedin space, i.e., their existence only relie
on the presence of locald-wave pairing correlations. In con
©2001 The American Physical Society18-1
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sequence, these states should be only weakly affected b
destruction of long-range superconducting order that occ
at Tc , and hence should ‘‘survive’’ the transition into th
pseudogap state. Thus, if STS experiments were to reve
sharp feature in the single-particle spectral function at lo
voltage bias, this would be evidence for the presence of lo
d-wave pairing correlations. And if such experiments we
able to characterize the temperature and doping depende
of the width of this spectral feature, this would provide
characterization of the nature of these finite-range spatial
temporal correlations. Of course, the interpretation of a
experiment conducted at nonzero temperature would hav
contend with broadening~arising, e.g., from thermal fluctua
tions of the sample!. In order to minimize the consequen
smearing of the spectral function, which has the potentia
obscure the very feature being sought, it would be prefera
to examine cuprate systems having low values ofTc ~e.g.
heavily underdoped systems!.

Why are we focusing on the case of~nonmagnetic! ex-
tendedimpurities as a probe of the pseudogap regime?
main reason underlying this choice is as follows. In the s
ting of extended impurities~as well as boundaries! in the
superconducting state, it has been shown that the exist
of low-energy quasiparticle states is a direct consequenc
the d-wave nature~or, more precisely, the sign-changing n
ture! of the pair potential.31 Extending this reasoning to th
case of extended impurities in the pseudogap regime, t
the existence of low-energy states strongly depends on
presence of superconducting correlations ofd-wave type.

We note that Kruiset al.33 have studied the density o
states near apointlike impurity in the context of a simple
phenomenological picture of the pseudogap regime. In
picture, the physics of the pseudogap regime is incorpora
through the hypothesis that, in the absence of the impu
the single-particle density of states vanishes linearly at
Fermi energy. At present, the extent to which an appro
based on this picture can yield information about pair
correlations in the pseudogap regime is not clear.

The present paper is organized as follows. In Sec. II
provide a framework for discussing the influence of loc
d-wave pairing correlations on quasiparticle states near
tended impurities,34 focusing on the single-particle spectr
function. As we shall see, our expression for this spec
function will take the form of a density of states~determined
at a fixed, locally phase-randomizedd-wave pair potential!
averaged over the fluctuations of the phase field. In Sec
we develop a semiclassical scheme for computing this d
sity of states at fixed pair potential in which we treat t
long-wavelength pair-potential phase variations via pertur
tion theory. This scheme allows us to focus on the contri
tion to the density of states at low energies, which involv
states arising from changes in sign~as the momentum is
varied! of the local pair potential. At this point we will hav
obtained an expression for the spectral function, which c
sists of a sum of terms each associated with one clas
scattering trajectory that passes through the vicinity of
impurity potential. In Sec. IV A we perform the average ov
the configurations of the fluctuating pair potential arrived
via local randomizations of the phase, under the assu
22451
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tion that the distribution of phase-field configurations
Gaussian. We make an approximation to the resulting exp
sion for the spectral function that is valid for the case
phase correlations persisting beyond the Cooper-pair s
finally arriving at an expression for the spectral function ne
an extended impurity that consists of a Gaussian peak
linewidth of which is proportional to the typical gradient o
the phase of the pair potential. In this section we also co
pute the linewidth of the spectral function in the pseudog
regime, doing so by assuming that the phase fluctuations
governed by the ~Berezinski�-Kosterlitz-Thouless! BKT
theory of the two-dimensionalXY model. Finally, in Sec. V
we make a numerical estimate of the linewidth by invoki
the results of recent high-frequency conductivity data14 and
provide some concluding remarks.

II. MODEL OF CUPRATES WITH AN EXTENDED
IMPURITY

In this section we formulate the task of obtaining t
single-particle spectral function in settings of systems of f
mions interacting via some fermion-fermion coupling a
also interacting with an external single-fermion potent
~which could, e.g., represent an impurity potential!. As our
aim is to address the phase-fluctuation picture of
pseudogap regime of the cuprates, we envision following
standard field-theoretic route~see, e.g., Ref. 35! of exchang-
ing the fermion-fermion coupling for a suitable collectiv
quantum fieldD. Thus we arrive at the following formula fo
the one-fermion Green functionG(x,x8):

G~x,x8!5

E DD†DDe2S[D]G~x,x8;D!

E DD†DDe2S[D]

, ~1a!

S ]t1ĥ D̂

D̂† ]t2ĥ
D G~x,x8;D!52d~x2x8!, ~1b!

i.e., a Bogoliubov–de Gennes Green function for pair pot
tial D, suitably averaged over quantum fieldD, the action for
which is S@D#. Here,x[(r ,t), wherer and t are, respec-
tively, the spatial position~in the two-dimensional CuO2
plane! and the Matsubara time. Furthermore,ĥ[2¹22kF

2

1V(r ), in which kF
2 is the chemical potential@i.e., kF

([2p/lF) is the Fermi wave vector#, V is the single-particle
potential, and we have adopted units in which\2/2m51, m
being the~effective! mass of the electrons and holes. T
operator D̂ is the pair-potential~integral! operator; how
it acts is specified by the nonlocal kernelD(x,x8) via

@D̂v#(x)5*dx8D(x,x8)v(x8).
Our primary interest is in spectral functionr(E) in the

pseudogap regime as well as the superconducting
pseudogap transition regime. This quantity can be obtai
in the usual way fromG(x,x8) as follows:

r~E![2p21Im TrE d2r G~r ,r ;vn!u ivn→E1 id , ~2a!
8-2
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G~r ,r 8;vn![E
0

b

dt eivntG~r ,r 8;t,0!, ~2b!

where Tr denotes a trace only in the 232 particle-hole
space,b[1/T ~i.e., we have chosen units in which Boltz
mann’s constantkB51), thevn[(2n11)pT ~with n inte-
gral! are fermionic Matsubara frequencies, andd501. We
shall assume that the temperature is sufficiently high to v
date the neglect of nonzero Matsubara-frequency mode
D, which amounts to treatingD as a classical~i.e., nonquan-
tal! statistical field. Under this static condition, in which th
fermion dynamics takes place in the presence of an unch
ing D field, the spectral functionr(E) may be expressed in
the form

r~E!5^r~E;D!&, ~3a!

r~E;D!5(
n

d~E2En!, ~3b!

where $En% is the collection of energy eigenvalues of th
following Bogoliubov–de Gennes eigenproblem in the pr
ence of a generic classical configuration ofD

S ĥ D̂

D̂† 2ĥ
D S u

v D 5ES u

v D . ~4!

The notation^•••& denotes the aforementioned static av
age overD, i.e.,

^O&[
E DD†DD e2S[D]O

E DD†DD e2S[D]

. ~5!

~We do not specifically indicate that this functional avera
is only over static configurations ofD.! Thus we have ex-
pressed the single-particle spectral functionr(E) in terms of
a suitably averaged density of statesr(E;D) for a corre-
sponding Bogoliubov–de Gennes eigenproblem.

Before proceeding with the analysis of the eigenprobl
given in Eq. ~4!, we address the issue of the form of th
pairing fluctuations that contribute dominantly to the avera
in Eq. ~3a!. This amounts to a statement about the phys
picture of the pseudogap regime that we are concerned w
Now, as discussed shortly before Eq.~3a!, we are consider-
ing only static configurations ofD, and therefore we shal
henceforth simplify the notation by writing the pair-potent
kernelD(x,x8) asD(x,x8)5D(r ,r 8). In addition, it is con-
venient to transformD(r ,r 8) to relative and center-of-mas
coordinates,r andR,

D̄~r,R![D~r ,r 8!, r[r2r 8, 2R[r1r 8. ~6!

It is then convenient to introduce the Fourier transform ofD̄

with respect to the relative coordinater, viz., D̄(k,R),

D̄~k,R![E d2re2 ik•rD̄~r,R!, ~7!
22451
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thus obtaining a pair potential at center-of-mass positionR
and relative momentumk.

As mentioned in Sec. I, the scenario for the pseudo
regime with which we are concerned is based on the do
nance of configurations ofD̄(k,R) of the form

D̄~k,R!5D̄0~k,R!eiq(R). ~8!

Here, the nonfluctuating factorD̄0(k,R) is taken to have
d-wave form~and can, therefore, be taken to be real!.36 The
fluctuating factor expiq(R) varies slowly withR. By assum-
ing this form for D̄(k,R) we are adopting the physical pic
ture of the state as being one in which there is no long-ra
superconducting order, but there are locald-wave supercon-
ducting correlations, embodied inD̄0(k,R).37

In the following section, we obtainr(E;D) by making
use of an elaboration of Andreev’s semiclassical approac38

to the Bogoliubov–de Gennes eigenproblem. This elabo
tion is appropriate for the setting at hand, viz., one in wh
there is a strong single-particle potential. This scheme w
used in Ref. 31 in order to address the low-energy densit
states near an extended impurity in ad-wave superconduct
ing state having a negligibly fluctuating, well-formed co
densate. In contrast, our focus here is on situations in wh
the fluctuations in theamplitude of D are small, but the
phaseof D is strongly fluctuating. Thus, although there
local pairing the system does does not exhibit long-ran
order.

III. SEMICLASSICAL APPROACH TO THE
BOGOLIUBOV –DE GENNES EIGENPROBLEM

In Sec. II we showed how the single-particle spect
function r(E) can be expressed as a density of sta
r(E;D) for the Bogoliubov–de Gennes eigenproblem at
bitrary pair potentialD, averaged overD with a suitable
weight, providedD can be treated in the static approxim
tion. To make progress with this Bogoliubov–de Genn
eigenproblem we invoke, in the present section, a semic
sical approximation under which Eq.~4! reduces to a family
of one-dimensional eigenproblems labeled by the class
scattering trajectories of a particle in the presence of
single-particle potentialV(r ). This approximation scheme
which was developed in Ref. 31, is valid provided thatkF

2

@$D0 ,E% for physically relevant configurations ofD ~where
D0 is the magnitude ofD), and provided thatV(r ) and rel-
evant configurations ofD vary slowly on the scale of the
Fermi wavelengthlF .

We now turn to the family of one-dimensional eigenpro
lems arising in our semiclassical scheme~see Fig. 1!. Fol-
lowing Ref. 31, it is straightforward to determine that th
emerging trajectory-dependent eigenproblem has the for

ĤS ū

v̄
D 5ES ū

v̄
D , ~9a!
8-3
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Ĥ[S 22ikF]s D0~s!expiq~s!

D0~s!exp2 iq~s! 2ikF]s
D , ~9b!

D0~s!.D̄0@kF]sxc~s!,xc~s!#. ~9c!

Here,q(s).q„xc(s)…, and the parameters measures the po
sition along a particular classical trajectoryxc(s), the latter
obeying the Newton equation

kF
2]s

2xc~s!52“V„xc~s!…. ~10!

Each such classical trajectory~and associated eigenproblem!
is labeled by an impact parameterb and an incoming mo-
mentum directionn.

Our next task is to obtain the low-energy eigenvalues
sociated with Eq.~9a! for the case of ad-wave pair potential
subject to generic spatial phase variations, i.e., Eq.~8!. To do
this, we perform a local unitary transformation ofĤ, i.e.,
Ĥ→UĤU†, where

U~s![S e2 iq(s)/2 0

0 eiq(s)/2D , ~11!

and thus our eigenproblem acquires the form

~Ĥ01Ĥ1!S ū

v̄
D 5ES ū

v̄
D , ~12a!

Ĥ0~s![S 22ikF]s D0~s!

D0~s! 2ikF]s
D , ~12b!

Ĥ1~s![S kF]sq 0

0 kF]sq
D . ~12c!

The Hamiltonian for this eigenproblem now consists of
term arising from the underlyingd-wave pair potential~i.e.
Ĥ0) as well as a term that contains all the phase-varia
information~i.e., Ĥ1). Our strategy is to treatĤ1 within per-
turbation theory, the starting point for which is the identi
cation of the eigenstates ofĤ0. As our purpose is to addres

FIG. 1. Schematic illustration of a classical trajectory for a qu
siparticle scattering from an extended impurity. Also shown is
depiction of the backgroundd-wave pair potential; dots indicat
incoming and outgoing quasiparticle momenta.
22451
s-

n

low-energy states, it is adequate for us to focus on thezero-

energyeigenstate ofĤ0, if any there be. As we shall discus
below, such states are guaranteed to arise for certain clas
trajectoriesxc(s).31,39The condition for the existence of suc
a state is determined by the asymptotic properties ofD0(s):
If D0(s) changes sign an odd number of times along
entire trajectory then the HamiltonianĤ0 associated with
that trajectory has precisely one zero-energy eigenstate.
more formally, ifD6[ lims→6`D0(s) then the condition for
the existence of the zero-energy state is thatD1D2,0. The
explicit form of this eigenstate is

c6~s!5
1

A2
S w6~s!

6 iw6~s!
D , ~13a!

w6~s![a6exp6~2kF!21Es

ds8 D0~s8!, ~13b!

wherec1 corresponds to the caseD1,0 ~so thatD2.0)
andc2 corresponds to the caseD1.0 ~so thatD2,0). The
prefactors a6 are normalization factors, chosen so th
*2`

` w6(s)2ds51.
Let us emphasize some of the important features of th

zero-energy states that hold provided the scatterer cre
only trajectories with at most a single sign change in the p
potential.40 First, the presence or absence of these states
pendsonly on the properties of thed-wave pair potential far
from any impurity, and is insensitive to any amplitude var
tions of thed-wave pair potential that might occur in th
vicinity of this impurity. Second, the wave functionsc6(s)
exhibit exponential decay away from the impurity with
decay constant of orderkF /uD6u, which is proportional to
the BCS correlation length. As this length scale is known
be short in the cuprates, these states are indeed an extre
local probe of local superconducting correlations.

In the absence of phase fluctuations~i.e., in the pure
d-wave superconductor!, these zero-energy eigenstates le
to a sharp peak in the density of states at low energies.31 To
access the impact of order-parameter phase variations on
peak, we include the effect ofĤ1 on the zero-energy stat
c6

† (s) within quantum-mechanical perturbation theor
Thus, the shift in energy of the previously zero-energy eig
state associated with a particular trajectoryxc(s) ~param-
etrized byn andb) is given by

e~n,b![E dsc6
† ~s!Ĥ1~s!c6~s!, ~14a!

5kFE ds]sq~s!w6~s!2, ~14b!

where we have used Eq.~13a! to get from Eq.~14a! to Eq.
~14b!. The spectral function at fixed pair potentialr(E,D)
consists of contributions from all trajectoriesxc(s). As we
are restricting our attention to low energies, it is sufficient
consider only trajectories for whichD1D2,0 ~i.e., those for
which Ĥ0 has a zero-energy state!. The contribution to the

-
a
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low-energy spectral function at constant pair potential due
the perturbed zero-energy states is given by

r~E,D!.kFE dn

2pE db d„E2e~n,b!…~12sgnD1 sgnD2!,

~15!

where the factor (12sgnD1sgnD2) ensures that only tra
jectories that satisfyD1D2,0 @i.e., exhibit an asymptotic
sign change inD0(s)] contribute.

It is important to emphasize that Eq.~15! only includes
the contribution from the perturbed zero-energy states,
that there will be additional, smaller contributions to the de
sity of states at low energies. Sources of these include r
nants of the near-nodal quasiparticles states that exist in p
d-wave superconductors at arbitrarily low energies.

IV. AVERAGING OVER PHASE FLUCTUATIONS

In Sec. III we obtained an expression for th
Bogoliubov–de Gennes density of statesr(E,D) in the pres-
ence of an extended impurity for the case of a pair-poten
with local d-wave character and specific realization of t
spatially varying phaseq(r ); see Eq.~15!. In the present
section, we calculate the spectral functionr(E) in the
pseudogap regime by averagingr(E,D) over suitable con-
figurations ofq(r ), i.e., by inserting Eq.~15! into Eq. ~3a!.
We remind the reader that our scheme for computingr(E)
applies to settings in which the temperature is high eno
that we may treat the phase fluctuations classically, as
cussed after Eq.~2b!.

A. Gaussian model for phase fluctuations

In order to evaluate the average over configurations of
pair potential in Eq.~3a! explicitly, we need a model for the
weight of the various configurations. For the sake of simp
ity, we choose the phase-field configurations to have a~zero
mean! Gaussian distribution characterized by the correla
^¹aq(r )¹bq(r 8)&. In terms of this correlator, it is straight
forward to show that the spectral functionr(E) is a super-
position of Gaussian distributions, one associated with e
classical trajectory on whichD0 changes sign,

r~E!.kFE dn

2pE db
exp~2E2/2^e~n,b!2&!

A2p^e2&

3~12sgnD1sgnD2!, ~16a!

^e~n,b!2&[kF
2E dsE ds8 w6

2 ~s!w6
2 ~s8!^]sq~s!]s8q~s8!&.

~16b!

Here, the widtĥ e(n,b)2& of each Gaussian contribution
sensitive to the degree to which local superconducting co
lations have been disrupted, as can be seen by the pres
of the phase-phase correlator^]sq(s)]s8q(s8)& in Eq. ~16b!.
Our next task, then, is to evaluate the integrals over the
rameterss and s8 in Eq. ~16b! in order to determine the
width ^e(n,b)2& associated with each trajectory (n,b). In the
22451
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following section, we carry out this evaluation within an a
proximation that is valid for the case of long-waveleng
phase fluctuations.

B. Approximate evaluation of trajectory integrals

In Sec. IV A, we obtained the expression~16a! for the
spectral functionr(E) near an extended impurity in th
pseudogap regime. In the present section, we make an
proximation to our expression forr(E) that makes use of the
local nature of the low-energy states, as well as the lo
wavelength nature of the pair-potential phase variations~ap-
propriate forT*Tc). By local we mean that the wave func
tions w6(s) exhibit exponential decay over a length scalej
;kF /uD6u ~whereD0 is the bulkd-wave pair potential!, i.e.,
the BCS correlation length; this can be seen by examin
Eq. ~13b!; see Ref. 41. In the cuprate superconductors,
length scale is expected to be much shorter than the le
scalejq for typical pair-potential phase variations~i.e., the
intervortex spacing!. Thus one has a separation of leng
scales:jq.j. ~Such a separation is a natural ingredient
the phase-fluctuation picture of the pseudogap regime
cause for intervortex spacings on the order ofj the conven-
tional meaning of local Cooper pairs breaks down.!

To make the approximation to our expression forr(E),
consider the integrations over the trajectory parameterss and
s8 in Eq. ~16b!. Now, the correlation function
^]sq(s)]s8q(s8)& varies appreciably only over length scal
on the order ofjq or longer, whereas the wave functionsw6

decay exponentially, as mentioned, on the length scalej.
Hence, one can make an asymptotic approximation to ths
ands8 integrations, which amounts to pulling the correlat
out of the integrals. Thus, owing to the normalization ofw6 ,
we have

^e2&.kF
2^]sq~s!us50

2 &, ~17!

independent ofn andb.
Next, we turn to the interpretation of the quanti

^]sq(s)us50
2 &. The derivative of the phase along a particu

trajectory is given by

]sq~s!5]sxc~s!•“q~x!ux5xc(s) , ~18!

By inserting Eq.~18! into Eq.~17!, we see that the correlato
of interest is^¹aq(r )¹bq(r )& which, by spatial isotropy,
has the formdab^u“q(r )u2&/2. According to the phase
fluctuation scenario, vortex excitations are the domin
mechanism for generating phase gradients.

How does this information about the phase correlatio
translate into information about the spectral function?
noting that trajectoriesxc(s) involving sign changes in the
d-wave pair potential obeyu]sxcu;1 and using the afore
mentioned phase-gradient correlator, we arrive at the wid

^e2&;kF
2^u“q~r !u2&/2 ~19!

and, hence, our final expression for the spectral funct
r(E),
8-5
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r~E!.
exp~2E2/2^e2&!

A2p^e2&
kFE dn

2p

3E db~12sgnD1 sgnD2!. ~20!

The first factor is a Gaussian in the energyE with a linewidth
^e2&1/2 associated with the rms fluctuations in the phase g
dient. The second factor~i.e. the integral over the impac
parameterb and the incoming momentum directionn) deter-
mines the scale forr(E), essentially by counting the numbe
of sign-changing trajectories and it is expected to be o
weakly temperature dependent. In the following section,
compute the linewidth within a Berezinski�-Kosterlitz-
Thouless-like model of phase fluctuations nearTc .

C. Linewidth near the superconducting phase boundary

To make further progress, we now attempt to calculate
spectral function linewidth due to the phase fluctuations
companying the destruction of superconducting order in
neighborhood ofTc . We shall do this by choosing a particu
lar weight for the phase fluctuations, viz., that associa
with the two-dimensionalXY model.42–44 Our analysis is
reminiscent of that due to Franz and Millis11 who addressed
the bulk single-particle spectral function in the pseudog
regime. In the present context, this analysis is provid
solely for illustrative purposes, and is meant only to prov
a rough estimate of the linewidth.

Let us consider theXY-model action

S@D#5
K

2E d2r u“qu2, ~21!

where K[rs(T)/T in which rs(T) is the temperature
dependent superfluid density.45,46 Note that we are not sug
gesting that the true critical fluctuations of the cuprate sup
conductors necessarily lie in the universality class of
two-dimensionalXY model, but simply that the intermediat
length-scale fluctuations proposed as leading to pseudo
phenomena may adequately be modeled by Eq.~21!. The
form for ^u“q(r )u2& for the XY model may be calculated
following the Debye-Hu¨ckel-type analysis of Halperin an
Nelson,47 giving

^u“q~r !u2&.
2

pjq
2 K*

ln Ljq , ~22!

in which K* is the short-length-scale stiffness~obtained us-
ing the Kosterlitz renormalization-group equations!, L is a
short-distance cutoff, andjq is a length scale characterizin
the typical intervortex spacing. The principal temperature
pendence in Eq.~22! arises viajq : nearTBKT @i.e., the tran-
sition temperature of the model~21!, which is expected to lie
not far belowTc] jq is proportional to expAQ/(T2TBKT),
whereQ is a constant of order unity~which we do not try to
calculate in detail!.

The proliferation of unbound vortex excitations upo
warming through the BKT transition is reflected~see Fig. 2!
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by this strong diminution ofjq and causes a concomitan
dramatic increase in the linewidth of the spectral function

^e2&1/2}exp@2AQ/~T2TBKT!#. ~23!

Observation of a fluctuation-broadened peak in the spec
function, e.g., via STS measurements, would provide strik
evidence in support of the phase-fluctuation scenario. Mo
over, the temperature dependence of the linewidth wo
e.g., provide access to the details of the vortex-unbind
transition.

V. NUMERICAL ESTIMATE OF THE LINEWIDTH;
CONCLUDING REMARKS

In the preceding section we saw how one could estim
the temperature dependence of the linewidth of the spec
function near the superconducting transition temperatureTc .
In the present section we make a rough numerical estimat
this linewidth at one particular temperature in the pseudo
regime by appealing to the data obtained in the hig
frequency conductivity experiments of Corsonet al.14 on
Bi2Sr2CaCu2O81d . We shall be specifically concerned wit
the interpretation of these data inasmuch as they provide
cess to the characteristic vortex density.

Until now we have been working with a system of units
which \2/2m51. Restoring conventional units in Eq.~19!
gives for the linewidth

^e2&1/2;
\2

2m
kF^u“q~r !u2/2&1/2. ~24!

To estimate this width, we turn to the experiments of Cors
et al. and its analysis by Corsonet al., which is based on the
notion that, at sufficiently high frequencies, the conductiv
probes short-length-scale pairing correlations, and lead
an estimate for the characteristic density of free vorticesnf .
Assuming that it is vortex excitations that lead to phase fl
tuations, one expects that, up to a constant of order un
^u“q(r )u2&.nf .

Now, Corsonet al. obtain values ofnf that are on the
order of 0.003avc ~for T;75 K), whereavc is the area of the
core of a vortex. If we take the vortex core to be a disk
radiusj.1 nm, this leads to the valuenf;103 mm22. Then,
using the order-of-magnitude estimatekF.1 nm21, Eq. ~24!
gives ^e2&1/2.9 meV.

FIG. 2. Spectral linewidth versus (T2TBKT)/Q. Inset: Immedi-
ate vicinity of the transition.
8-6



as
th

on
te
rg
c
e

d
ne
s
a
n
O

s
sk

.

rm-

hich
ions
nts

f the

s.
rgy,
2-
y at

PROBINGd-WAVE PAIRING CORRELATIONS IN THE . . . PHYSICAL REVIEW B 64 224518
The value of this estimate is that it shows that, for at le
one cuprate material, there is a temperature at which
free-vortex density is small enough that phase fluctuati
only weakly perturb the energies of the quasiparticle sta
Hence, the linewidth arising from perturbed zero-ene
states can be rather smaller than the scale of the super
ducting energy gap~and hence small enough to justify th
our picture of perturbed zero modes! but be large enough to
be resolvable in STS measurements, such as those of Yaz
et al.28 Larger densities of free vortices, and hence large li
widths, would result from working at higher temperature
Moreover, nearTc the vortex density is expected to show
very strong dependence on temperature, which should co
a strong temperature dependence on the linewidth.
course, if conducted at the temperature of the experiment
Corsonet al., thermal broadening would complicate the ta
of accessing the intrinsic linewidth~i.e., the linewidth due to
phase fluctuations!; recall that 10 K is equivalent to 1 meV
H
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Thus, as emphasized in Sec. I, one should consider perfo
ing experiments on materials having a lowerTc , so that the
pseudogap regime can be explored at temperatures at w
thermal broadening is less significant. These considerat
indicate that it is at least conceivable that STS experime
near extended scatterers could provide a sharp test o
phase fluctuation scenario for the pseudogap regime.
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