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Probing d-wave pairing correlations in the pseudogap regime of the cuprate superconductors
via low-energy states near impurities
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The issue of probing the pseudogap regime of the cuprate superconductors, specifically with regard to the
existence and nature of superconducting pairing correlatiodswdve symmetry, is explored theoretically. It
is shown that if thed-wave correlations believed to describe the superconducting state persist into the
pseudogap regime, but with pair-potential phase fluctuations that destroy their long-range nature, then the
low-energy quasiparticle states observed near extended impurities in the truly superconducting state should
also persist as resonances in the pseudogap regime. The scattering of quasiparticles by these phase-fluctuations
broadens what wagn the superconducting stata sharp peak in the single-particle spectral function at low
energy, as we demonstrate within the context of a simple model. This peak and its broadening are, in principle,
accessible via scanning tunneling spectroscopy near extended impurities in the pseudogap regime. If so, such
experiments would provide a probe of the extent to whieliave superconducting correlations persist upon
entering the pseudogap regime, thus providing a stringent diagnostic of the phase-fluctuation scenario.
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[. INTRODUCTION pseudogap is due to some other mode of electronic ordéring.
The purpose of the present paper is to identify one such
Among the challenges presented by the high-temperaturerobe: scanning-tunneling-spectroscopsTS measure-
superconductors, one of the most persistent concerns tiBeNts of the single-particle spectral function near extended
anomalous properties of thermal state of these materials. IMPUrities in the pseudogap regirffe’”
In particular, the suppression of single-particle spectral Before explaining the nature of this probe, let us pause to

weight around the Fermi enerby for temperatures above recall one (3f26|ts essential ingredients. It is has long been
) o recognize@~ that the scattering of quasiparticles between
the superconducting transition temperatiigeof the under-

doped cuprates indicates that the electronic behavior of thesséates corresponding to differing signs of thavave pair

materials deviates substantially from that of conventional Supoter:mal tl;eads to tgeh eX|sttTnce of Iow-(t-:-nter?y st%;'i_é@:.
perconductors. There have been several theoretical scenariggc scattering, and hence jow-energy state formation, oc-

o _ curs, e.g., at suitably oriented surfaces in the cuprates, lead-
proposed to explain this so-called pseudogap beh&vidn

the present paber. we shall be concerned with a particul ing to the observed zero-bias anomaly in the tunneling
present paper, we s . ap onductancé’ In the setting of impurityrather than bound-
one of these, viz., the phase-fluctuation scen®fi& Ac-

. . ) . ) . ary) scattering ird-wave superconductors, low-energy states,
cording to this scenario, superconducting correlations in th?lvhich in this case are localized near the impurities, have
form of Cooper pairing are presumed to exiand to be

. , _ : been observed in STS experimefité® and have been dis-
responsible for the loss of single-particle spectral weifiht - ,sseq theoretically for the case of pointfikeand

temperatured” below the pseudogap onset temperaflite  extended"®? impurities. We remind the reader that these
However, in the intermediate-temperature rafige, T.<T  states co-exist with the continuum of low-energy quasiparti-
=T*) the long-range spatial and temporal coherence in thele states associated with the nodes at whictdtheve pair
phase of Cooper-pair wave functiofmccurring forT<T,) potential vanishes. Distinguishing between impurity states
is presumed to be present only up to intermediate lengtland nodal states is straightforward because the former give a
scales, having been disrupted on longer length scales by thpeaked contribution to the spectral function whereas the con-
presence and motion of vortex excitations. In other wordstribution from the latter vanishes linearly at zero eneidy.
although long-range phase coherence is absent in it, thelear example of this is furnished by the data reported in Ref.
pseudogap regime is quantitatively distinguished from the28.)
conventional nonsuperconducting state by the presence of Returning to our main task, viz., probing the pseudogap
substantial, residual, localwave pairing correlations. regime for pairing correlations, we now state the central idea
Several recent experimental investigations support the nan which the present paper is based. Let us suppose that the
tion of the phase-fluctuation scenario as the origin ofpseudogap state is indeed distinguished by the presence of
pseudogap phenomenology, including Refs. 14 and 15. Futecal (but not long ranged-wave pairing correlations. The
ther steps towards an understanding of the nature of thkack of long-range phase coherence in such a state under-
pseudogap regime would be furnished by experimentamines the efficacy of conventional tegtich as the Meiss-
probes that are targeted towards the question of the existenoer effecj for superconducting correlations. However, the
of the putative local superconducting correlatidfis® Such  low-energy quasiparticle states occurring near extended im-
probes would have the potential to discriminate between scepurities ardocalizedin space, i.e., their existence only relies
narios based on pairing correlations and those in which then the presence of locdlwave pairing correlations. In con-
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sequence, these states should be only weakly affected by thien that the distribution of phase-field configurations is
destruction of long-range superconducting order that occur&aussian. We make an approximation to the resulting expres-
at T,, and hence should “survive” the transition into the sion for the spectral function that is valid for the case of
pseudogap state. Thus, if STS experiments were to revealfase correlations persisting beyond the Cooper-pair size,
sharp feature in the single-particle spectral function at lowdinally arriving at an expression for the spectral function near
voltage bias, this would be evidence for the presence of localn extended impurity that consists of a Gaussian peak the
d-wave pairing correlations. And if such experiments werellnéwidth of which is proportional to the typical gradient of
able to characterize the temperature and doping dependendb€ Phase of the pair potential. In this section we also com-
of the width of this spectral feature, this would provide aPuté the linewidth of the spectral function in the pseudogap
characterization of the nature of these finite-range spatial ang9ime, doing so by assuming that the phase fluctuations are
temporal correlations. Of course, the interpretation of anygoverned by the (Berezinski-Kosterlitz-Thouless BKT
experiment conducted at nonzero temperature would have t§€ory of the two-dimensional’Y model. Finally, in Sec. V
contend with broadenin@rising, e.g., from thermal fluctua- W& make a numerical estimate of the linewidth by invoking
tions of the sample In order to minimize the consequent the results of recent high-frequency conductivity daend

smearing of the spectral function, which has the potential t@rovide some concluding remarks.

obscure the very feature being sought, it would be preferable

to examine cuprate systems having low valuesTgf(e.g. Il. MODEL OF CUPRATES WITH AN EXTENDED

heavily underdoped systeins IMPURITY

ten\évehgirr?pr)ir\i,:iZsfc;CsuZI?)?o%g gethC:Ziggggn;pg?:gﬁne; The. In this section we formqlatg the t_ask of obtaining the
. ; X Lot X %mgle-partlcle spectral function in settings of systems of fer-

main reason underlying this choice is as follows. In the set-

ting of extended impuritiegas well as boundarigsn the mions interacting via some fermion-fermion coupling and
9 P also interacting with an external single-fermion potential

superconducting state, it has been shown that the existen(z hich could, e.g., represent an impurity potentials our
of low-energy quasiparticle states is a direct consequence im is to address the phase-fluctuation picture of the

:B?e? g\ﬁ\éz r;&;l:rg&rénrggéf Ié);te;rﬁj?r% g]ﬁs Srlggsgu?:gtr(])gtrr:: pseudogap regime of the cuprates, we envision following the

; o ) standard field-theoretic routeee, e.g., Ref. 3of exchang-
case O.f extended impurities in the pseudogap regime, theri‘r?ig the fermion-fermion coupling for a suitable collective
the existence of low-energy states strongly depends on th(?uantum fieldA. Thus we arrive at the following formula for
presence of superconducting correlationslafave type. '

We note that Kruiset al®® have studied the density of the one-fermion Green functioi(x,x"):

states near @ointlike impurity in the context of a simple

phenomenological picture of the pseudogap regime. In this J DATDAe SAIG(x,x";A)

picture, the physics of the pseudogap regime is incorporated G(x,x")= ; (1a)
through the hypothesis that, in the absence of the impurity, f DATDAe SIA]

the single-particle density of states vanishes linearly at the

Fermi energy. At present, the extent to which an approach
based on this picture can yield information about pairing
correlations in the pseudogap regime is not clear. AT a—h
The present paper is organized as follows. In Sec. Il we T
provide a framework for discussing the influence of localj.e., a Bogoliubov—de Gennes Green function for pair poten-
d-wave pairing c04rrelat|o_ns on quasiparticle states near exjal A, suitably averaged over quantum field the action for
tended impuritie$! focusing on the single-particle spectral which is S[A]. Here,x=(r,7), wherer and r are, respec-
fUnCt!On. AS we shall see, our eXpreSS|0n for this -Spectra{ive|y, the Spatia' positior(in the two-dimensional Cup
functn_)n will take the form of a de_nsny of statex..‘ketermln.ed plana and the Matsubara time. FurthermoFe;—Vz—kﬁ
at a fixed, locally phase-randomizedwave pair potential . . P . -

i ! +V(r), in which kg is the chemical potentiafi.e., kg
averaged over the fluctuations of the phase field. In Sec. Il —2m/\;) is the Fermi wave vectdrV is the single-particle
we develop a semiclassical scheme for computing this den-_ " "F o i

P puting potential, and we have adopted units in which2m=1, m

sity of states at fixed pair potential in which we treat the' ™. )
long-wavelength pair-potential phase variations via perturbat-)elng theA(effectlve mass of the electrons and holes. The

tion theory. This scheme allows us to focus on the contribu©Perator A is the pair-potential(integra) operator; how
tion to the density of states at low energies, which involvedt acts is specified by the nonlocal kerndi(x,x") via
states arising from changes in sigas the momentum is [Av](X)=[dx"A(X,x")v(X").

varied of the local pair potential. At this point we will have Our primary interest is in spectral functign(E) in the
obtained an expression for the spectral function, which conpseudogap regime as well as the superconducting-to-
sists of a sum of terms each associated with one classicaseudogap transition regime. This quantity can be obtained
scattering trajectory that passes through the vicinity of then the usual way fron(x,x’) as follows:

impurity potential. In Sec. IV A we perform the average over
the configurations of the fluctuating pair potential arrived at
via local randomizations of the phase, under the assump-

a+h A
G(x,x";A)=—8(x—x"), (1b)

p(E)=—7"1Im Trj d?r Q(r,r;wn)|iwn_,E+i5, (29
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B . thus obtaining a pair potential at center-of-mass posikon

g(r,r’;wn)zj dre'“n’g(r,r';7,0), (2b)  and relative momenturk.

0 As mentioned in Sec. |, the scenario for the pseudogap
where Tr denotes a trace only in thex2 particle-hole regime with which we are concerned is based on the domi-
space,B=1/T (i.e., we have chosen units in which Boltz- nance of configurations af(k,R) of the form
mann’s constankg=1), the w,=(2n+1)7T (with n inte-
gral) are fermionic Matsubara frequencies, afd0+. We o o '
shall assume that the temperature is sufficiently high to vali- A(k,R)=Aq(k,R)e(R) (8)
date the neglect of nonzero Matsubara-frequency modes of
A, which amounts to treatind as a classicdi.e., nonquan-

tal) statistical field. Under this static condition, in which the

fermion dynamics takes place in the presence of an unchanﬁi\"';’wet.for?1 (a;nd can, Lherefqre, l:l)e t?keq;g bBe JealThe
ing A field, the spectral functiop(E) may be expressed in nuctuating factor expd(R) varies slowly withR. By assum-

the form ing this form for A(k,R) we are adopting the physical pic-
ture of the state as being one in which there is no long-range
p(E)=(p(E;A)), (3@ superconducting order, but there are lodalave supercon-

ducting correlations, embodied iy (k,R).%’

In the following section, we obtaip(E;A) by making
use of an elaboration of Andreev’s semiclassical apprfach
to the Bogoliubov—de Gennes eigenproblem. This elabora-
where{E,} is the collection of energy eigenvalues of the tion is appropriate for the setting at hand, viz., one in which
following Bogoliubov—de Gennes eigenproblem in the presthere is a strong single-particle potential. This scheme was

Here, the nonfluctuating facta?o(k,R) is taken to have

p(E;A>=§ S(E—E,), (3b)

ence of a generic classical configuration/of used in Ref. 31 in order to address the low-energy density of
. . states near an extended impurity irdavave superconduct-
h  Alfu u ing state having a negligibly fluctuating, well-formed con-
AT —h/lv =E vl (4 densate. In contrast, our focus here is on situations in which
the fluctuations in theamplitude of A are small, but the
The notation(- - -) denotes the aforementioned static aver-phaseof A is strongly fluctuating. Thus, although there is
age overj, i.e., local pairing the system does does not exhibit long-range
order.

f DATDA e SA1O

(O)y= (5) I1l. SEMICLASSICAL APPROACH TO THE

f DATDA e SlAl BOGOLIUBOV —DE GENNES EIGENPROBLEM

In Sec. Il we showed how the single-particle spectral
Sunction p(E) can be expressed as a density of states
p(E;A) for the Bogoliubov—de Gennes eigenproblem at ar-
bitrary pair potentialA, averaged oved with a suitable
weight, providedA can be treated in the static approxima-
tion. To make progress with this Bogoliubov—de Gennes
meigenproblem we invoke, in the present section, a semiclas-

giv_e_n in Eq.(4), we address_ the issut_a of the form of the i) approximation under which E) reduces to a family
pairing fluctuations that contribute dominantly to the averag f one-dimensional eigenproblems labeled by the classical

in. ItEq. (3‘?t'hThiS ar’r&ounts toa stag]er?ent about the phé/Sic.? cattering trajectories of a particle in the presence of the
EIIC ure Od' € psel(Jj or?a% reé]lrfne at we are concerng Wi r%‘ingle-particle potentiaV(r). This approximation scheme,
ow, as discussed shortly before E§a), we are consider- which was developed in Ref. 31, is valid provided tkat

ing only static configurations ofA, and therefore we shall >{A,.E} for physically relevant configurations af where
henceforth simplify the notation by writing the pair-potential A, is the magnitude of), and provided thav(r) and rel-

kernelA(x,x") asA(x,x")=A(r.r'). In addition, it is con- evant configurations oA vary slowly on the scale of the
venient to transform\(r,r’) to relative and center-of-mass . g y y
Fermi wavelength\ .

coordinatesp andR, We now turn to the family of one-dimensional eigenprob-
~ _ , S _ , lems arising in our semiclassical schelfisee Fig. 1 Fol-
AlpR)=A(rr),  p=r—r’, 2R=r+r’. 6) lowing Ref. 31, it is straightforward to determine that the

It is then convenient to introduce the Fourier transformof ©Merging trajectory-dependent eigenproblem has the form
with respect to the relative coordingpe viz., A(k,R),

~ (U u
K(k,R)EJ Ppe % PA(p,R), @) H(— :E@' %2

v

(We do not specifically indicate that this functional averag
is only over static configurations df.) Thus we have ex-
pressed the single-particle spectral functidit) in terms of

a suitably averaged density of state6E;A) for a corre-
sponding Bogoliubov—de Gennes eigenproblem.
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low-energy states, it is adequate for us to focus onztire-

energyeigenstate ofi o, if any there be. As we shall discuss
below, such states are guaranteed to arise for certain classical
trajectoriesx(s).2>**The condition for the existence of such

a state is determined by the asymptotic propertied 4&):

If Ay(s) changes sign an odd number of times along an

entire trajectory then the HamiltoniaH, associated with
that trajectory has precisely one zero-energy eigenstate. Said
more formally, ifA.=limg_, . .Ay(S) then the condition for

the existence of the zero-energy state is that\ _<0. The
explicit form of this eigenstate is

FIG. 1. Schematic illustration of a classical trajectory for a qua- 1
siparticle scattering from an extended impurity. Also shown is a pe(s)= E
depiction of the background-wave pair potential; dots indicate
incoming and outgoing quasiparticle momenta.

(133

¢+(s) )
*Tip.(s))’

— -1 S ’ ’
~ 2ikeds Ao(s)expm(s)) o #=(9)7 @ exp= 2k fds Aolsh. 130

Ap(s)exp—id(s) 2ikgds where s, corresponds to the cage, <0 (so thatA_>0)

o and_ corresponds to the cagde, >0 (so that\ _<0). The
Ag(S)=A[KpdeX(S),X(S)]. (90 prefactors @.. are normalization factors, chosen so that
I @+(s)?ds=1.

Let us emphasize some of the important features of these
zero-energy states that hold provided the scatterer creates
only traj(igtories with at most a single sign change in the pair

2.2 _ potential™ First, the presence or absence of these states de-
KpIXe(S) = = VV(X(S)). (10 pendsonly on the properties of thd-wave pair potential far
Each such classical trajectofgind associated eigenproblem from any impurity, and is insensitive to any amplitude varia-
is labeled by an impact parameterand an incoming mo- tions of thed-wave pair potential that might occur in the
mentum directiom. vicinity of this impurity. Second, the wave functions. (s)

Our next task is to obtain the low-energy eigenvalues asexhibit exponential decay away from the impurity with a
sociated with Eq(9a) for the case of a-wave pair potential decay constant of ordee:/|A .|, which is proportional to
subject to generic spatial phase variations, i.e.,(ByTo do  the BCS correlation length. As this length scale is known to
this, we perform a local unitary transformation Hf, i.e., D€ shortin the cuprates, these states are indeed an extremely
A UAUT where local probe of local superconducting c_:or_relatl_ons.

' In the absence of phase fluctuatiofi®., in the pure
e i9(s)2 0 d-wave superconductirthese zero-energy eigenstates lead
U(s)z( if}(s)lz) , (11)  to a sharp peak in the density of states at low enefjigs.
0 € access the impact of order-parameter phase variations on this

and thus our eigenproblem acquires the form peak, we include the effect df; on the zero-energy state
z,/th(s) within quantum-mechanical perturbation theory.
u
:) - E
v

Here, 3(s)=3(x,(s)), and the parametermeasures the po-
sition along a particular classical trajectoxy(s), the latter
obeying the Newton equation

u Thus, the shift in energy of the previously zero-energy eigen-
—1s (129 state associated with a particular trajectorys) (param-
v etrized byn andb) is given by

(Fo+Hy)

~ [~ 2ikgds Ag(s) N

o=l 4 o aiven (12 cnb)= [ dsyloAusva(s,  (4a
) Kedgd O

Hl(s)E( 0 kﬁ@‘)' (120 =kFJ dsdsd(s) ¢ (8)?, (14b

The Hgmiltonian for this eige_:nproblem now cons_ist_s of ahere we have used E(L33a to get from Eq.(143 to Eq.
term arising from the underlying-wave pair potentiali.e. (14b). The spectral function at fixed pair potentia(E,A)

Ho) as well as a term that contains all the phase-variatiortonsists of contributions from all trajectories(s). As we
information(i.e., H;). Our strategy is to treati; within per-  are restricting our attention to low energies, it is sufficient to
turbation theory the startmg point for which is the identifi- consider only trajectories for which, A <0 (i.e., those for

cation of the eigenstates bfo As our purpose is to address which H, has a zero-energy statéThe contribution to the
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low-energy spectral function at constant pair potential due tdollowing section, we carry out this evaluation within an ap-
the perturbed zero-energy states is given by proximation that is valid for the case of long-wavelength
phase fluctuations.

dn
p(E'A):kFJEJ db S(E— €(n,b))(1—sgnA , sgnA_),

(19 In Sec. IV A, we obtained the expressi¢h6a for the
where the factor (+sgnA,sgnA_) ensures that only tra- spectral functionp(E) near an extended impurity in the
jectories that satisfyA , A_<0 [i.e., exhibit an asymptotic pseudogap regime. In the present section, we make an ap-
sign change imM\y(s)] contribute. proximation to our expression fa(E) that makes use of the

It is important to emphasize that E(L5) only includes local nature of the low-energy states, as well as the long-
the contribution from the perturbed zero-energy states, andiavelength nature of the pair-potential phase variati@ips
that there will be additional, smaller contributions to the den-propriate forT=T.). By local we mean that the wave func-
sity of states at low energies. Sources of these include remions ¢..(s) exhibit exponential decay over a length scéle
nants of the near-nodal quasiparticles states that exist in pure;k /|A . | (whereA, is the bulkd-wave pair potential i.e.,

B. Approximate evaluation of trajectory integrals

d-wave superconductors at arbitrarily low energies. the BCS correlation length; this can be seen by examining
Eq. (13b); see Ref. 41. In the cuprate superconductors, this
IV. AVERAGING OVER PHASE FLUCTUATIONS length scale is expected to be much shorter than the length
) ) scale ¢, for typical pair-potential phase variatiorfse., the
In Sec. Il we obtained an expression for thejntervortex spacing Thus one has a separation of length

Bogoliubov—de Gennes density of stag&,A) in the pres-  gegjes:¢,>¢. (Such a separation is a natural ingredient of
ence of an extended impurity for the case of a pair-potentiafhe phase-fluctuation picture of the pseudogap regime be-
with local d-wave character and specific realization of the5,se for intervortex spacings on the ordegdhe conven-
spatially varying phase(r); see Eq.(15). In the present (onal meaning of local Cooper pairs breaks down.

section, we ca}lculate the spectral functhnm;) in the To make the approximation to our expression fgE),
pseudogap regime by averagipgE,A) over suitable con-  consider the integrations over the trajectory parametersd
figurations of(r), i.e., by inserting Eq(15) into Eq.(3a. ¢ in Eq. (16h. Now, the correlation function
We remind the reader that our scheme for compufitB)  (5.9(s)a 9(s’)) varies appreciably only over length scales
applies to settings in which the temperature is high enougly, the order of, or longer, whereas the wave functiops

that we may treat the phase fluctuations classically, as d'sdecay exponentially, as mentioned, on the length séale

cussed after E(2b). Hence, one can make an asymptotic approximation tcsthe
ands’ integrations, which amounts to pulling the correlator
A. Gaussian model for phase fluctuations out of the integrals. Thus, owing to the normalizationgof,

In order to evaluate the average over configurations of th&/€ have
pair potential in Eq(3a) explicitly, we need a model for the 5 5 5
weight of the various configurations. For the sake of simplic- (%) =kg(ds9(s)|5=0), (17
ity, we choose the phase-field configurations to haveeso
mean Gaussian distribution characterized by the correlato ) . .
(V,3(r)Vg0(r")). In terms of this correlator, it is straight- Next,zwe turn to the interpretation of the quantity
forward to show that the spectral functipfE) is a super- (?s9(S)|s-0). The derivative of the phase along a particular
position of Gaussian distributions, one associated with eaci&jectory is given by
classical trajectory on which, changes sign,

jndependent oh andb.

As3(S) = dX(s)- VIH(X)| x=x(8) (18
dn exp(—E?/2(e(n,b)?)) _ . .
p(E):k,:f ﬂf db Bl By inserting Eq(18) into Eq.(17), we see that the correlator
2m(e%) of interest is(V,9(r)V z9(r)) which, by spatial isotropy,
X (1—sgnA . sgnA ), (16 has the form 8,5(|V9(r)|?)/2. According to the phase-

fluctuation scenario, vortex excitations are the dominant
mechanism for generating phase gradients.
(e(n,b)z)zkﬁf dsf ds’ ©2() @2 (s'){ds9(S)ds I(S")). How does this information about the phase correlations
(16b) translate into information about the spectral function? By
noting that trajectories(s) involving sign changes in the
Here, the width(e(n,b)?) of each Gaussian contribution is d-wave pair potential obeydx]~1 and using the afore-
sensitive to the degree to which local superconducting corrementioned phase-gradient correlator, we arrive at the width
lations have been disrupted, as can be seen by the presence
of the phase-phase correlater9(s)ds 9(s')) in Eq.(16b). (2 ~KE(|V O(r)|?)/2 (19
Our next task, then, is to evaluate the integrals over the pa-
rameterss and s’ in Eq. (16b) in order to determine the and, hence, our final expression for the spectral function
width (e(n,b)?) associated with each trajectony,b). Inthe  p(E),
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- exp( — E%/2(€)) ) dn
p /2,”_< €2> FI o 0.3
X f db(1—sgnA . sgnA_). (20) 0.2 15| X100

1.0

The first factor is a Gaussian in the eneEgwith a linewidth 0.1 05

(€212 associated with the rms fluctuations in the phase gra- .

dient. The second factaii.e. the integral over the impact 001 002

parameteb and the incoming momentum directiof deter- 02 0.4 0.6 0.8 1

mines the scale fgs(E), essentially by counting the number
of sign-changing trajectories and it is expected to be onlya
weakly temperature dependent. In the following section, we
compute the linewidth within a Berezinskosterlitz-
Thouless-like model of phase fluctuations n&ar

FIG. 2. Spectral linewidth versug - Tgkr)/0. Inset: Immedi-
te vicinity of the transition.

by this strong diminution ofty and causes a concomitant
dramatic increase in the linewidth of the spectral function

C. Linewidth near the superconducting phase boundary () YV2xexg —VO/(T—Tger) ] (23

To make f“.”hef progress, we now attempt to calcglate th%bservation of a fluctuation-broadened peak in the spectral
spectral function linewidth due to the phase fluctuations ac;

companying the destruction of superconducting order in théunction, e.g., via STS measurements, would provide striking
neighborhood off,. We shall do this by choosing a particu- vidence in support of the phase-fluctuation scenario. More-

lar weight for the phase fluctuations, viz., that associate ver, the temperature dependence of the linewidth would,
with the two-dimensionalXy model“z"““ Our analysis is .g., provide access to the details of the vortex-unbinding

reminiscent of that due to Franz and Mitfisvho addressed transition.

the bulk single-particle spectral function in the pseudogap

regime. In the present context, this analysis is provided V- NUMERICAL ESTIMATE OF THE LINEWIDTH;
solely for illustrative purposes, and is meant only to provide CONCLUDING REMARKS

a rough estimate of the linewidth.

: ) In the preceding section we saw how one could estimate
Let us consider th&'Y-model action

the temperature dependence of the linewidth of the spectral
K function near the superconducting transition temperafyre
gA]= _j d2r|V 92, (22) In the present section we make a rough numerical estimate of
2 this linewidth at one particular temperature in the pseudogap
regime by appealing to the data obtained in the high-

where K=pg(T)/T in which o4(T) is the temperature- frequency conductivity experiments of Corsemall* on

H 6
dependent superfluid densfy® Note that we are not sug- Bi,Sr,CaCyOg, 5. We shall be specifically concerned with

gesting that the true gr|t|cgl ﬂuctuaﬂon; of th? cuprate SUPEle interpretation of these data inasmuch as they provide ac-
conductors necessarily lie in the universality class of the

. . : : . cess to the characteristic vortex density.
two-dimensionaX'Y model, but simply that the intermediate Until now we have been working with a system of units in
length-scale fluctuations proposed as leading to pseudog%)nich #2/2m=1. Restoring conventional units in EGL9)
phenomena may adequately be modeled by ). The ives for the Iinéwidth
form for (|V9(r)|?) for the XY model may be calculated 9

following the Debye-Huakel-type analysis of Halperin and 72
Nelson? giving <62>1’2~ﬁkF<|va(r)|2/2>1’2. (24)
(IV9(r)[2)= INAZ,. 22) To estimate this width, we turn to the experiments of Corson

ZK*

2 et al. and its analysis by Corsagt al., which is based on the

notion that, at sufficiently high frequencies, the conductivity

in which K* is the short-length-scale stiffnegsbtained us- probes short-length-scale pairing correlations, and leads to
ing the Kosterlitz renormalization-group equatipnd is a  an estimate for the characteristic density of free vortizes
short-distance cutoff, anély is a length scale characterizing Assuming that it is vortex excitations that lead to phase fluc-
the typical intervortex spacing. The principal temperature detuations, one expects that, up to a constant of order unity,
pendence in Eq22) arises viagy: nearTgyr [i.€., the tran- (| V&(r)|®)=n;.
sition temperature of the modé&1), which is expected to lie Now, Corsonet al. obtain values ofn; that are on the
not far belowT] &, is proportional to exp®/(T—Tgkr),  order of 0.003a,, (for T~75 K), wherea,. is the area of the
where® is a constant of order unitfwhich we do not try to  core of a vortex. If we take the vortex core to be a disk of
calculate in detajl radiusé=1 nm, this leads to the valug~ 10> um~2. Then,

The proliferation of unbound vortex excitations upon using the order-of-magnitude estimate=1 nm 1, Eq.(24)
warming through the BKT transition is reflectésee Fig. 2  gives(e?)¥?=9 meV.
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The value of this estimate is that it shows that, for at leasThus, as emphasized in Sec. |, one should consider perform-
one cuprate material, there is a temperature at which thing experiments on materials having a lower, so that the
free-vortex density is small enough that phase fluctuationpseudogap regime can be explored at temperatures at which
only weakly perturb the energies of the quasiparticle stateshermal broadening is less significant. These considerations
Hence, the linewidth arising from perturbed zero-energyindicate that it is at least conceivable that STS experiments
states can be rather smaller than the scale of the supercoRear extended scatterers could provide a sharp test of the

ducting energy gagand hence small enough to justify the phase fluctuation scenario for the pseudogap regime.
our picture of perturbed zero moddsut be large enough to

be resolvable in STS measurements, such as those of Yazdani
et al?® Larger densities of free vortices, and hence large line-
widths, would result from working at higher temperatures.
Moreover, neaiT . the vortex density is expected to show a It is a pleasure to thank Erich Mueller for discussions.
very strong dependence on temperature, which should conféthis work was supported by the U.S. Department of Energy,
a strong temperature dependence on the linewidth. ODivision of Materials Sciences under Award No. DEFG02-
course, if conducted at the temperature of the experiments &ER45439, through the Materials Research Laboratory at
Corsonet al, thermal broadening would complicate the taskthe University of Illinois at Urbana-Champaigb.E.S., LA,

of accessing the intrinsic linewidttie., the linewidth due to P.M.G., A.Y), by NSF Grant No. DMR99-7518P.M.G),
phase fluctuationsrecall that 10 K is equivalent to 1 meV. and by Grant No. NSF DMR98-75563..Y.)
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