3,758 research outputs found

    Nonlinear Dynamical Equation for Irreversible, Steepest-Entropy-Ascent Relaxation to Stable Equilibrium

    Full text link
    We discuss the structure and main features of the nonlinear evolution equation proposed by this author as the fundamental dynamical law within the framework of Quantum Thermodynamics. The nonlinear equation generates a dynamical group providing a unique deterministic description of irreversible, conservative relaxation towards equilibrium from any non-equilibrium state, and satisfies a very restrictive stability requirement equivalent to Hatsopoulos-Keenan statement of the second law of thermodynamics. Here, we emphasize its mathematical structure and its applicability also within other contexts, such as Classical and Quantum Statistical Mechanics, and Information Theory.Comment: Proceedings of the Conference "Quantum Theory: Reconsideration of Foundations - 4", Vaxjo, Sweden, June 11-16, 200

    Efficient Hardware Design Of Iterative Stencil Loops

    Get PDF
    A large number of algorithms for multidimensional signals processing and scientific computation come in the form of iterative stencil loops (ISLs), whose data dependencies span across multiple iterations. Because of their complex inner structure, automatic hardware acceleration of such algorithms is traditionally considered as a difficult task. In this paper, we introduce an automatic design flow that identifies, in a wide family of bidimensional data processing algorithms, sub-portions that exhibit a kind of parallelism close to that of ISLs; these are mapped onto a space of highly optimized ad-hoc architectures, which is efficiently explored to identify the best implementations with respect to both area and throughput. Experimental results show that the proposed methodology generates circuits whose performance is comparable to that of manually-optimized solutions, and orders of magnitude higher than those generated by commercial HLS tools

    Sustainable Hydrogen Production via Sorption Enhanced Reforming of Complex Biorefinery Side Streams in a Fixed Bed Adiabatic Reactor

    Get PDF
    In this work, sorption enhanced steam reforming is explored as a potential solution for the valorization of gaseous streams recovered from biorefinery hydrogenation processes. The hydrogen content of such streams limits the hydrocarbon conversion in conventional steam reforming due to thermodynamic and kinetic constraints. A previously developed 1D dynamic heterogeneous model of an adiabatic reactor was thus applied to evaluate the effect of H-2 dilution on the performance indicators of the sorption enhanced reforming process. The mathematical model analysis highlights that despite of CO2 capture by the sorbent favorably modifies the thermodynamics of syngas production, H-2 dilution worsens the performance of the sorption enhanced reforming of model H-2/CH4 streams with respect to pure CH4. Results show a drop of 17% for CH4 conversion and a reduction of 15.4% of the captured CO2 on passing from pure methane to a H-2/CH4 feed with a 40/60 molar ratio. However, on increasing the heat capacity of the bed, by replacing part of the sorbent with an inert heat carrier, better performances are calculated for the H-2/CH4 feed matching the pure CH4 case. The presence of C2+ hydrocarbons is assessed as well and the results show a significant improvement in the reformer's performance; in the case of a stream composed of H-2/CH4/C3H8 with a molar ratio 40/45/15, the total hydrocarbon conversion grows to 92.8%, CO2 capture ratio to 82.6%, and H-2 purity to 95.6%. The positive effect is associated with thermal factors that promote the reaction kinetics. Thus, the suitability of the sorption enhanced reforming technology to H-2-rich and C-poor streams is strictly composition dependent; by cofeeding of C2+ hydrocarbons, the process turns into a remarkable solution for converting gaseous streams in pure H-2

    Cardiopulmonary exercise testing in a combined screening approach to individuate pulmonary arterial hypertension in systemic sclerosis

    Get PDF
    Objectives The DETECT algorithm has been developed to identify SSc patients at risk for pulmonary arterial hypertension (PAH) yielding high sensitivity but low specificity, and positive predictive value. We tested whether cardiopulmonary exercise testing (CPET) could improve the performance of the DETECT screening strategy. Methods Consecutive SSc patients over a 30-month period were screened with the DETECT algorithm and positive subjects were referred for CPET before the execution of right-heart catheterization. The predictive performance of CPET on top of DETECT was evaluated and internally validated via bootstrap replicates. Results Out of 314 patients, 96 satisfied the DETECT application criteria and 54 were positive. PAH was ascertained in 17 (31.5%) and pre-capillary pulmonary hypertension in 23 (42.6%) patients. Within CPET variables, the slope of the minute ventilation to carbon dioxide production relationship (VE/VCO2 slope) had the best performance to predict PAH at right-heart catheterization [median (interquartile range) of specificity 0.778 (0.714\u20130.846), positive predictive value 0.636 (0.556\u20130.750)]; exploratory analysis on pre-capillary yielded a specificity of 0.714 (0.636\u20130.8) and positive predictive value of 0.714 (0.636\u20130.8). Conclusion In association with the DETECT algorithm, CPET may be considered as a useful tool in the workup of SSc-related pulmonary hypertension. The sequential determination of the VE/VCO2 slope in DETECT-positive subjects may reduce the number of unnecessary invasive procedures without any loss in the capability to capture PAH. This strategy had also a remarkable performance in highlighting the presence of pre-capillary pulmonary hypertension

    Wehrl information entropy and phase distributions of Schrodinger cat and cat-like states

    Get PDF
    The Wehrl information entropy and its phase density, the so-called Wehrl phase distribution, are applied to describe Schr\"odinger cat and cat-like (kitten) states. The advantages of the Wehrl phase distribution over the Wehrl entropy in a description of the superposition principle are presented. The entropic measures are compared with a conventional phase distribution from the Husimi Q-function. Compact-form formulae for the entropic measures are found for superpositions of well-separated states. Examples of Schr\"odinger cats (including even, odd and Yurke-Stoler coherent states), as well as the cat-like states generated in Kerr medium are analyzed in detail. It is shown that, in contrast to the Wehrl entropy, the Wehrl phase distribution properly distinguishes between different superpositions of unequally-weighted states in respect to their number and phase-space configuration.Comment: 10 pages, 4 figure

    Spatial Molecular and Cellular Determinants of STAT3 Activation in Liver Fibrosis Progression in Non-alcoholic Fatty Liver Disease

    Get PDF
    BACKGROUND & AIMS: The prevalence of non-alcoholic fatty liver disease (NAFLD) and its severe form, non-alcoholic steatohepatitis (NASH), is increasing. Individuals with NASH often develop liver fibrosis and advanced liver fibrosis is the main determinant of mortality in individuals with NASH. We and others have reported that STAT3 contributes to liver fibrosis and hepatocellular carcinoma in mice. METHODS: Here, we explored whether STAT3 activation in hepatocyte and non-hepatocyte areas, measured by phospho-STAT3 (pSTAT3), is associated with liver fibrosis progression in 133 patients with NAFLD. We further characterized the molecular and cellular determinants of STAT3 activation by integrating spatial distribution and transcriptomic changes in fibrotic NAFLD livers.Results: pSTAT3 scores in non-hepatocyte areas progressively increased with fibrosis severity (r = 0.53, CONCLUSION: Increased understanding of the spatial dependence of STAT3 signaling in NASH and liver fibrosis progression could lead to novel targeted treatment approaches. IMPACT AND IMPLICATIONS: Advanced liver fibrosis is the main determinant of mortality in patients with NASH. This study showed using liver biopsies from 133 patients with NAFLD, that STAT3 activation in non-hepatocyte areas is strongly associated with fibrosis severity, inflammation, and progression to NASH. STAT3 activation was enriched in hepatic progenitor cells (HPCs) and sinusoidal endothelial cells (SECs), as determined by innovative technologies interrogating the spatial distribution of pSTAT3. Finally, STAT3 inhibition in mice resulted in reduced liver fibrosis and depletion of HPCs, suggesting that STAT3 activation in HPCs contributes to their expansion and fibrogenesis in NAFLD

    Cellular and Molecular Mechanisms of Liver Fibrosis in Patients with NAFLD

    Get PDF
    The expression of immune- and cancer-related genes was measured in liver biopsies from 107 NAFLD patients. The strongest difference in overall gene expression was between liver fibrosis stages F3 and F4, with 162 cirrhosis-associated genes identified. Strong correlations with fibrosis progression from F1 to F4 were observed for 91 genes, including CCL21, CCL2, CXCL6, and CCL19. In addition, the expression of 21 genes was associated with fast progression to F3/F4 in an independent group of eight NAFLD patients. These included the four chemokines, SPP1, HAMP, CXCL2, and IL-8. A six-gene signature including SOX9, THY-1, and CD3D had the highest performance detecting the progressors among F1/F2 NAFLD patients. We also characterized immune cell changes using multiplex immunofluorescence platforms. Fibrotic areas were strongly enriched in CD3+ T cells compared to CD68+ macrophages. While the number of CD68+ macrophages increased with fibrosis severity, the increase in CD3+ T-cell density was more substantial and progressive from F1 to F4. The strongest correlation with fibrosis progression was observed for CD3+CD45R0+ memory T cells, while the most significant increase in density between F1/F2 and F3/F4 was for CD3+CD45RO+FOXP3+CD8- and CD3+CD45RO-FOXP3+CD8- regulatory T cells. A specific increase in the density of CD68+CD11b+ Kupffer cells with liver fibrosis progression was also observed

    The cyclin-dependent kinase inhibitor p57(Kip2) is epigenetically regulated in carboplatin resistance and results in collateral sensitivity to the CDK inhibitor seliciclib in ovarian cancer

    Get PDF
    Carboplatin remains a first-line agent in the management of epithelial ovarian cancer (EOC). Unfortunately, platinum-resistant disease ultimately occurs in most patients. Using a novel EOC cell line with acquired resistance to carboplatin: PEO1CarbR, genome-wide micro-array profiling identified the cyclin-dependent kinase inhibitor p57(Kip2) as specifically downregulated in carboplatin resistance. Presently, we describe confirmation of these preliminary data with a variety of approaches
    • …
    corecore