30 research outputs found

    Deposition and Characterization of NiCoCrAlY Coatings by Multi-chamber Detonation Sprayer

    Get PDF
    In this study, multi-chamber detonation sprayer (MCDS) was applied for deposition of NiCoCrAlY powder coatings (60-65 mm thick) on nickel base superalloy JS6U (Russia). Powder RPCoCr27Al7Si3Y was used to deposit of a coating. The coating microstructures and phase compositions were characterized using SEM, OM and XRD techniques. Measurement of the microhardness of samples was done with a micro-hardness tester DM – 8B using a Vickers’s indenter with load on of 0.01 N. It was established that MCDS has provided the conditions for formation of a dense layer with porosity below 1% and microhardness of 1100 Β± 250 HV0.1

    Deposition and Characterization of NiCoCrAlY Coatings by Multi-chamber Detonation Sprayer

    Get PDF
    In this study, multi-chamber detonation sprayer (MCDS) was applied for deposition of NiCoCrAlY powder coatings (60-65 mm thick) on nickel base superalloy JS6U (Russia). Powder RPCoCr27Al7Si3Y was used to deposit of a coating. The coating microstructures and phase compositions were characterized using SEM, OM and XRD techniques. Measurement of the microhardness of samples was done with a micro-hardness tester DM – 8B using a Vickers’s indenter with load on of 0.01 N. It was established that MCDS has provided the conditions for formation of a dense layer with porosity below 1% and microhardness of 1100 Β± 250 HV0.1

    Properties of superhard nanostructured coatings Ti-Hf-Si-N

    Get PDF
    New superhard coatings based on Ti-Hf-Si-N featuring high physical and mechanical properties were fabricated. We employed a vacuum-arc source with HF stimulation and a cathode sintered from Ti-Hf-Si. Nitrides were fabricated using atomic nitrogen (N) or a mixture of Ar/N, which were leaked-in a chamber at various pressures and applied to a substrate potentials. RBS, SIMS, GT-MS, SEM with EDXS, XRD, and nanoindentation were employed as analyzing methods of chemical and phase composition of thin films. We also tested tribological and corrosion properties. The resulting coating was a two-phase, nanostructured nc-(Ti, Hf)N and Ξ±-Si3N4. Sizes of substitution solid solution nanograins changed from 3.8 to 6.5 nm, and an interface thickness surrounding Ξ±-Si3N4 varied from 1.2 to 1.8 nm. Coatings hardness, which was measured by nanoindentation was from 42.7 GPa to 48.6 GPa, and an elastic modulus was E = (450 to 515) GPa. The films stoichiometry was defined for various deposition conditions. It was found that in samples with superhard coatings of 42.7 to 48.6GPa hardness and lower roughness in comparison with other series of samples, friction coefficient was equal to 0.2, and its value did not change over all depth (thickness) of coatings. A film adhesion to a substrate was essentially high and reached 25MPa. Π’ Ρ€Π°Π±ΠΎΡ‚Π΅ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Ρ‹ Π½ΠΎΠ²Ρ‹Π΅ свСрхтвСрдыС покрытия Π½Π° основС Ti-Hf-Si-N с высокими Ρ„ΠΈΠ·ΠΈΠΊΠΎ-мСханичСскими свойствами. Π’ процСссС синтСза ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ Π²Π°ΠΊΡƒΡƒΠΌΠ½ΠΎ-Π΄ΡƒΠ³ΠΎΠ²ΠΎΠ³ΠΎ осаТдСния с ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ Π’Π§ напряТСния распылялся Ρ†Π΅Π»ΡŒΠ½ΠΎΠ»ΠΈΡ‚ΠΎΠΉ ΠΊΠ°Ρ‚ΠΎΠ΄ Ti-Hf-Si. Нитриды Ρ„ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π»ΠΈΡΡŒ Π² срСдС Π°Ρ‚ΠΎΠΌΠ°Ρ€Π½ΠΎΠ³ΠΎ Π°Π·ΠΎΡ‚Π° (N) ΠΈΠ»ΠΈ Π² смСси Ar/N, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Π½Π°ΠΏΡƒΡΠΊΠ°Π»ΠΈΡΡŒ Π² ΠΊΠ°ΠΌΠ΅Ρ€Ρƒ ΠΏΡ€ΠΈ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… давлСниях. Π₯имичСский ΠΈ Ρ„Π°Π·ΠΎΠ²Ρ‹ΠΉ составы Ρ‚ΠΎΠ½ΠΊΠΈΡ… ΠΏΠ»Π΅Π½ΠΎΠΊ анализировался ΠΌΠ΅Ρ‚ΠΎΠ΄Π°ΠΌΠΈ RBS, SIMS, GT-MS, SEM с EDXS, РБА, Π° Ρ‚Π²Π΅Ρ€Π΄ΠΎΡΡ‚ΡŒ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΠ»Π°ΡΡŒ Π½Π°Π½ΠΎΠΈΠ½Π΄Π΅Π½Ρ‚ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ. ИсслСдовались трибологичСскиС ΠΈ ΠΊΠΎΡ€Ρ€ΠΎΠ·ΠΈΠΎΠ½Π½Ρ‹Π΅ свойства ΠΏΠΎΠΊΡ€Ρ‹Ρ‚ΠΈΠΉ. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ покрытия ΡΠ²Π»ΡΡŽΡ‚ΡΡ Π΄Π²ΡƒΡ…Ρ„Π°Π·Π½Ρ‹ΠΌΠΈ наноструктурированными nс-(Ti, Hf)N ΠΈ Ξ±-Si3N4. Π Π°Π·ΠΌΠ΅Ρ€Ρ‹ Π½Π°Π½ΠΎΠ·Π΅Ρ€Π΅Π½ Ρ‚Π²Π΅Ρ€Π΄ΠΎΠ³ΠΎ раствора Π²Π°Ρ€ΡŒΠΈΡ€ΠΎΠ²Π°Π»ΠΈΡΡŒ ΠΎΡ‚ 3,8 Π΄ΠΎ 6,5 Π½ΠΌ, Π° Ρ‚ΠΎΠ»Ρ‰ΠΈΠ½Π° ΠΎΠΊΡ€ΡƒΠΆΠ°ΡŽΡ‰Π΅ΠΉ ΠΎΠ±ΠΎΠ»ΠΎΡ‡ΠΊΠΈ Ξ±-Si3N4 мСнялась ΠΎΡ‚ 1,2 Π΄ΠΎ 1,8 Π½ΠΌ. Π’Π²Π΅Ρ€Π΄ΠΎΡΡ‚ΡŒ ΠΏΠΎΠΊΡ€Ρ‹Ρ‚ΠΈΠΉ H составляла 42,7 48,6 Π“ΠŸΠ°, Π° ΠΌΠΎΠ΄ΡƒΠ»ΡŒ упругости Π• ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π» значСния ΠΎΡ‚ 450 Π“ΠŸΠ° Π΄ΠΎ 515 Π“ΠŸΠ°. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π° стСхиомСтрия ΠΏΠ»Π΅Π½ΠΎΠΊ ΠΏΡ€ΠΈ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… условиях осаТдСния. УстановлСно, Ρ‡Ρ‚ΠΎ Π² ΠΎΠ±Ρ€Π°Π·Ρ†Π°Ρ… свСрхтвСрдых ΠΏΠΎΠΊΡ€Ρ‹Ρ‚ΠΈΠΉ с Ρ‚Π²Π΅Ρ€Π΄ΠΎΡΡ‚ΡŒΡŽ 42,7 48.6 Π“ΠŸΠ° наблюдалась Π±ΠΎΠ»Π΅Π΅ низкая ΡˆΠ΅Ρ€ΠΎΡ…ΠΎΠ²Π°Ρ‚ΠΎΡΡ‚ΡŒ ΠΏΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ с Π΄Ρ€ΡƒΠ³ΠΈΠΌΠΈ ΠΎΠ±Ρ€Π°Π·Ρ†Π°ΠΌΠΈ, коэффициСнт трСния составлял 0,2, ΠΈ Π΅Π³ΠΎ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Π½Π΅ измСнялось ΠΏΠΎ всСй Π³Π»ΡƒΠ±ΠΈΠ½Π΅ (Ρ‚ΠΎΠ»Ρ‰ΠΈΠ½Π΅) покрытия. АдгСзия ΠΏΠ»Π΅Π½ΠΊΠΈ ΠΊ ΠΏΠΎΠ΄Π»ΠΎΠΆΠΊΠ΅ достигла 25 МПа. Π£ Ρ€ΠΎΠ±ΠΎΡ‚Ρ– ΠΎΡ‚Ρ€ΠΈΠΌΠ°Π½Ρ– Π½ΠΎΠ²Ρ– Π½Π°Π΄Ρ‚Π²Π΅Ρ€Π΄Ρ– покриття Π½Π° основі Ti-Hf-SΡ–-N Π· високими Ρ„Ρ–Π·ΠΈΠΊΠΎ-ΠΌΠ΅Ρ…Π°Π½Ρ–Ρ‡Π½ΠΈΠΌΠΈ властивостями. Π£ процСсі синтСзу ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ Π²Π°ΠΊΡƒΡƒΠΌΠ½ΠΎ-Π΄ΡƒΠ³ΠΎΠ²ΠΎΠ³ΠΎ осадТСння Ρ–Π· застосуванням Π’Π§ Π½Π°ΠΏΡ€ΡƒΠ³ΠΈ Ρ€ΠΎΠ·ΠΏΠΎΡ€ΠΎΡˆΡƒΠ²Π°Π²ΡΡ ΡΡƒΡ†Ρ–Π»ΡŒΠ½ΠΎΠ»ΠΈΡ‚ΠΈΠΉ ΠΊΠ°Ρ‚ΠΎΠ΄ TΡ–-Hf-SΡ–. Нітриди формувалися Ρƒ сСрСдовищі Π°Ρ‚ΠΎΠΌΠ°Ρ€Π½ΠΎΠ³ΠΎ Π°Π·ΠΎΡ‚Ρƒ (N) Π°Π±ΠΎ Ρƒ ΡΡƒΠΌΡ–ΡˆΡ– Ar/N, які напускалися Ρƒ ΠΊΠ°ΠΌΠ΅Ρ€Ρƒ ΠΏΡ€ΠΈ Ρ€Ρ–Π·Π½ΠΈΡ… тисках. Π₯Ρ–ΠΌΡ–Ρ‡Π½ΠΈΠΉ Ρ– Ρ„Π°Π·ΠΎΠ²ΠΈΠΉ склади Ρ‚ΠΎΠ½ΠΊΠΈΡ… ΠΏΠ»Ρ–Π²ΠΎΠΊ аналізувалися ΠΌΠ΅Ρ‚ΠΎΠ΄Π°ΠΌΠΈ RBS, SΠ†MS, GT-MS, SEM Π· EDXS, РБА, Π° Ρ‚Π²Π΅Ρ€Π΄Ρ–ΡΡ‚ΡŒ визначалася наноіндСнтуванням. ДослідТувалися Ρ‚Ρ€ΠΈΠ±ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½Ρ– Ρ‚Π° ΠΊΠΎΡ€ΠΎΠ·Ρ–ΠΉΠ½Ρ– властивості ΠΏΠΎΠΊΡ€ΠΈΡ‚Ρ‚Ρ–Π². ΠžΡ‚Ρ€ΠΈΠΌΠ°Π½Ρ– покриття Ρ” Π΄Π²ΠΎΡ„Π°Π·Π½ΠΈΠΌΠΈ наноструктурованими nс-(TΡ–, Hf)N Ρ– -SΡ–3N4. Π ΠΎΠ·ΠΌΡ–Ρ€ΠΈ Π½Π°Π½ΠΎΠ·Π΅Ρ€Π΅Π½ Ρ‚Π²Π΅Ρ€Π΄ΠΎΠ³ΠΎ Ρ€ΠΎΠ·Ρ‡ΠΈΠ½Ρƒ Π²Π°Ρ€Ρ–ΡŽΠ²Π°Π»ΠΈΡΡ Π²Ρ–Π΄ 3,8 Π΄ΠΎ 6,5 Π½ΠΌ, Π° Ρ‚ΠΎΠ²Ρ‰ΠΈΠ½Π° Π½Π°Π²ΠΊΠΎΠ»ΠΈΡˆΠ½ΡŒΠΎΡ— ΠΎΠ±ΠΎΠ»ΠΎΠ½ΠΊΠΈ -SΡ–3N4 Π·ΠΌΡ–Π½ΡŽΠ²Π°Π»Π°ΡΡ Π²Ρ–Π΄ 1,2 Π΄ΠΎ 1,8 Π½ΠΌ. Π’Π²Π΅Ρ€Π΄Ρ–ΡΡ‚ΡŒ ΠΏΠΎΠΊΡ€ΠΈΡ‚Ρ‚Ρ–Π² H становила 42,7 48,6 Π“ΠŸΠ°, Π° ΠΌΠΎΠ΄ΡƒΠ»ΡŒ пруТності Π• ΠΏΡ€ΠΈΠΉΠΌΠ°Π² значСння Π²Ρ–Π΄ 450 Π“ΠŸΠ° Π΄ΠΎ 515 Π“ΠŸΠ°. Π’ΠΈΠ·Π½Π°Ρ‡Π΅Π½ΠΎ ΡΡ‚Π΅Ρ…Ρ–ΠΎΠΌΠ΅Ρ‚Ρ€Ρ–ΡŽ ΠΏΠ»Ρ–Π²ΠΎΠΊ ΠΏΡ€ΠΈ Ρ€Ρ–Π·Π½ΠΈΡ… ΡƒΠΌΠΎΠ²Π°Ρ… осадТСння. ВстановлСно, Ρ‰ΠΎ Ρƒ Π·Ρ€Π°Π·ΠΊΠ°Ρ… Π½Π°Π΄Ρ‚Π²Π΅Ρ€Π΄ΠΈΡ… ΠΏΠΎΠΊΡ€ΠΈΡ‚Ρ‚Ρ–Π² Ρ–Π· Ρ‚Π²Π΅Ρ€Π΄Ρ–ΡΡ‚ΡŽ 42,7 48.6 Π“ΠŸΠ° спостСрігалася Π½ΠΈΠΆΡ‡Π° ΡˆΠΎΡ€ΡΡ‚ΠΊΡ–ΡΡ‚ΡŒ Ρƒ порівнянні Π· Ρ–Π½ΡˆΠΈΠΌΠΈ Π·Ρ€Π°Π·ΠΊΠ°ΠΌΠΈ, ΠΊΠΎΠ΅Ρ„Ρ–Ρ†Ρ–Ρ”Π½Ρ‚ тСртя становив 0,2, Ρ– ΠΉΠΎΠ³ΠΎ значСння Π½Π΅ Π·ΠΌΡ–Π½ΡŽΠ²Π°Π»ΠΎΡΡ Π·Π° глибиною (Ρ‚ΠΎΠ²Ρ‰ΠΈΠ½ΠΎΡŽ) покриття. АдгСзія ΠΏΠ»Ρ–Π²ΠΊΠΈ Π΄ΠΎ ΠΏΡ–Π΄ΠΊΠ»Π°Π΄ΠΊΠΈ досягла 25 МПа

    Improving the Wear Resistance of Thermally Sprayed Nanocomposite Cr3C2-25NiCr Coatings by Pulsed Plasma Treatment

    Get PDF
    In this study the surfaces of thermally sprayed nanocomposite Cr3C2-25NiCr coating have been treated by the pulsed plasma. The nanocomposite Cr3C2-25NiCr coating was deposited by a new multi-chamber gas-dynamic accelerator on grit blasted steel substrate. An automatic pulse-plasma device β€œImpulse-6” was employed to plasma treatment the surface of Cr3C2-25NiCr coating. The microstructure and wear resistance of the surface of the nanocomposite Cr3C2-NiCr coating before and after the pulsed plasma treatment (PPT) was studied in this paper. Wear tests were carried out using a computer controlled pin-on-disc type tribometer at 25 ΒΊC. The specific wear rate of the nanocomposite Cr3C2-25NiCr coating after PPT is approximately four times less than that of the Cr3C2-25NiCr coating before PPT, indicating that the nanocomposite Cr3C2-25NiCr coating after PPT exhibits better wear resistance. Detailed analysis indicates that the enhanced wear resistance of the nanocomposite Cr3C2-25NiCr coating after PPT is mainly attributed to the formation of an oxide tribolayer and smoother surface, which result from the dense and amorphous microstructure of the coating

    Elemental and phase analysis of nanocomposite coatings on basis Ti-Hf-Si-N system received by the vacuum-arc deposition method

    No full text
    Coatings on the basis Ti-Hf-Si-N system were synthesized by vacuum-arc deposition method from the uniflow and separated ion-plasma flow. The morphology, elemental and phase composition of coatings were investigated. The dependence of the characteristics of the coating from the physical and technological parameters of deposition was installed. The two-phase structure of the coating: a substitutional solution (Ti, Hf)N and quasiamorphous silikonitrid Ξ±-Si₃Nβ‚„ was determined. The factors that determine the compressive stresses in the coatings were considered.ΠœΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ Π²Π°ΠΊΡƒΡƒΠΌΠ½ΠΎ-Π΄ΡƒΠ³ΠΎΠ²ΠΎΠ³ΠΎ осаТдСния ΠΈΠ· прямоточного ΠΈ сСпарированного ΠΈΠΎΠ½Π½ΠΎ-ΠΏΠ»Π°Π·ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ ΠΏΠΎΡ‚ΠΎΠΊΠ° синтСзированы покрытия Π½Π° основС систСмы Ti-Hf-Si-N. ИсслСдована морфология, ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ элСмСнтный ΠΈ Ρ„Π°Π·ΠΎΠ²Ρ‹ΠΉ состав ΠΏΠΎΠΊΡ€Ρ‹Ρ‚ΠΈΠΉ. УстановлСна Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡ‚ΡŒ характСристик ΠΏΠΎΠΊΡ€Ρ‹Ρ‚ΠΈΠΉ ΠΎΡ‚ Ρ„ΠΈΠ·ΠΈΠΊΠΎ-тСхнологичСских ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² осаТдСния. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π° двухфазная структура покрытия: Ρ‚Π²Π΅Ρ€Π΄Ρ‹ΠΉ раствор замСщСния (Ti, Hf)N ΠΈ ΠΊΠ²Π°Π·ΠΈΠ°ΠΌΠΎΡ€Ρ„Π½Ρ‹ΠΉ силиконитрид Ξ±-Si₃Nβ‚„. РассмотрСны Ρ„Π°ΠΊΡ‚ΠΎΡ€Ρ‹, ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΡŽΡ‰ΠΈΠ΅ ΡΠΆΠΈΠΌΠ°ΡŽΡ‰ΠΈΠ΅ напряТСния Π² покрытиях.ΠœΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ Π²Π°ΠΊΡƒΡƒΠΌΠ½ΠΎ-Π΄ΡƒΠ³ΠΎΠ²ΠΎΠ³ΠΎ осадТСння Π· прямоточного Ρ– сСпарованого Ρ–ΠΎΠ½Π½ΠΎ-ΠΏΠ»Π°Π·ΠΌΠΎΠ²ΠΎΠ³ΠΎ ΠΏΠΎΡ‚ΠΎΠΊΡƒ синтСзовані покриття Π½Π° основі систСми Ti-Hf-Si-N. ДослідТСно ΠΌΠΎΡ€Ρ„ΠΎΠ»ΠΎΠ³Ρ–ΡŽ, Π²ΠΈΠ·Π½Π°Ρ‡Π΅Π½ΠΎ Π΅Π»Π΅ΠΌΠ΅Π½Ρ‚Π½ΠΈΠΉ Ρ– Ρ„Π°Π·ΠΎΠ²ΠΈΠΉ склад ΠΏΠΎΠΊΡ€ΠΈΡ‚Ρ‚Ρ–Π². ВстановлСно Π·Π°Π»Π΅ΠΆΠ½Ρ–ΡΡ‚ΡŒ характСристик ΠΏΠΎΠΊΡ€ΠΈΡ‚Ρ‚Ρ–Π² Π²Ρ–Π΄ Ρ„Ρ–Π·ΠΈΠΊΠΎ-Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½ΠΈΡ… ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ–Π² осадТСння. Π’ΠΈΠ·Π½Π°Ρ‡Π΅Π½Π° Π΄Π²ΠΎΡ„Π°Π·Π½Π° структура покриття: Ρ‚Π²Π΅Ρ€Π΄ΠΈΠΉ Ρ€ΠΎΠ·Ρ‡ΠΈΠ½ заміщСння (Ti, Hf) N Ρ– ΠΊΠ²Π°Π·Ρ–Π°ΠΌΠΎΡ€Ρ„Π½ΠΈΠΉ силіконітрид Ξ±-Si₃Nβ‚„. Розглянуто Ρ‡ΠΈΠ½Π½ΠΈΠΊΠΈ, Ρ‰ΠΎ Π²ΠΈΠ·Π½Π°Ρ‡Π°ΡŽΡ‚ΡŒ ΡΡ‚ΠΈΡΠΊΠ°ΡŽΡ‡Ρ– напруТСння Ρƒ покриттях

    Structures and properties of Ti alloys after double implantation

    Get PDF
    Π’ Ρ€Π°Π±ΠΎΡ‚Π΅ прСдставлСны Π½ΠΎΠ²Ρ‹Π΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΠΏΠΎ исслСдованию структуры ΠΈ Ρ„ΠΈΠ·ΠΈΠΊΠΎ-мСханичСскиС свойства приповСрхностных слоСв Ρ‚ΠΈΡ‚Π°Π½ΠΎΠ²Ρ‹Ρ… сплавов послС (W+, Mo+) ΠΈΠΎΠ½Π½ΠΎΠΉ ΠΈΠΌΠΏΠ»Π°Π½Ρ‚Π°Ρ†ΠΈΠΈ ΠΈ ΠΏΠΎΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π΅Π³ΠΎ ΠΎΡ‚ΠΆΠΈΠ³Π° ΠΏΡ€ΠΈ 550 Π‘ Π² Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ 2 Ρ‡. ИспользованиС ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ рассСяния (RBS) ΠΈΠΎΠ½ΠΎΠ² гСлия ΠΈ ΠΏΡ€ΠΎΡ‚ΠΎΠ½ΠΎΠ², ΡΠΊΠ°Π½ΠΈΡ€ΡƒΡŽΡ‰Π΅ΠΉ элСктронной микроскопии (SEM) с ΠΌΠΈΠΊΡ€ΠΎΠ°Π½Π°Π»ΠΈΠ·Π° (ЭЦП), (WDS), ΠΏΡ€ΠΎΡ‚ΠΎΠ½ΠΎΠ² (ΠΈΠΎΠ½ΠΎΠ²), ΠΈΠ½Π΄ΡƒΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ рСнтгСновского излучСния (PIXE), Ρ€Π΅Π½Ρ‚Π³Π΅Π½ΠΎΡ„Π°Π·ΠΎΠ²ΠΎΠ³ΠΎ Π°Π½Π°Π»ΠΈΠ·Π° (РБА) с Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ ΡΠΊΠΎΠ»ΡŒΠ·ΡΡ‰Π΅Π³ΠΎ падСния (0,5 Π³Ρ€Π°Π΄.), измСрСния нанотвСрдости ΠΈ модуля упругости, трСния износа (Ρ†ΠΈΠ»ΠΈΠ½Π΄Ρ€-пластины), измСрСния коррозионная ΡΡ‚ΠΎΠΉΠΊΠΎΡΡ‚ΡŒ Π² солСвом растворС, ΠΌΡ‹ исслСдовали VT-6 ΠΎΠ±Ρ€Π°Π·Ρ†ΠΎΠ², ΠΈ опрСдСляСтся ΠΈΡ… сопротивлСния усталости ΠΏΡ€ΠΈ цикличСских Π½Π°Π³Ρ€ΡƒΠ·ΠΊΠ°Ρ…. Π‘Ρ‹Π»ΠΎ ΠΎΠ±Π½Π°Ρ€ΡƒΠΆΠ΅Π½ΠΎ Π΄Π²ΠΎΠΉΠ½ΠΎΠ΅ ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠ΅ твСрдости, сниТСниС износа ΠΈ ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠ΅ сопротивлСния усталости, Ρ‡Ρ‚ΠΎ Π±Ρ‹Π»ΠΎ связано с Ρ„ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ малодиспСрсного Π½ΠΈΡ‚Ρ€ΠΈΠ΄Π°, ΠΊΠ°Ρ€Π±ΠΎΠ½ΠΈΡ‚Ρ€ΠΈΠ΄Π°, ΠΈ ΠΈΠ½Ρ‚Π΅Ρ€ΠΌΠ΅Ρ‚Π°Π»Π»ΠΈΠ΄Π½Ρ‹Ρ… Ρ„Π°Π·.The paper presents new results on investigation of structure and physical-mechanical properties of near surface layers of titanium alloys after (W+, Mo+) ion implantation and subsequent thermal annealing under 550 C for 2 h. Using back scattering (RBS) of helium ions and protons, scanning electron microscopy (SEM) with microanalysis (EDS), (WDS), proton (ion) induced X-ray emission (PIXE), X-ray phase analysis (XRD) with a grazing incidence geometry (0.5 angle), measurements of nanohardness and elastic modulus, friction wear (cylinder-plate), measurements of corrosion resistance in a salt solution, we investigated the VT-6 samples, and determined their fatigue resistance under cyclic loads. Double increase of hardness, decrease of wear and increased fatigue resistance were found, which was related to the formation of small dispersion (nanodimension) nitride, carbonitride, and intermetalloid phases

    Structures and properties of Ti alloys after double implantation

    Get PDF
    Π’ Ρ€Π°Π±ΠΎΡ‚Π΅ прСдставлСны Π½ΠΎΠ²Ρ‹Π΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΠΏΠΎ исслСдованию структуры ΠΈ Ρ„ΠΈΠ·ΠΈΠΊΠΎ-мСханичСскиС свойства приповСрхностных слоСв Ρ‚ΠΈΡ‚Π°Π½ΠΎΠ²Ρ‹Ρ… сплавов послС (W+, Mo+) ΠΈΠΎΠ½Π½ΠΎΠΉ ΠΈΠΌΠΏΠ»Π°Π½Ρ‚Π°Ρ†ΠΈΠΈ ΠΈ ΠΏΠΎΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π΅Π³ΠΎ ΠΎΡ‚ΠΆΠΈΠ³Π° ΠΏΡ€ΠΈ 550 Π‘ Π² Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ 2 Ρ‡. ИспользованиС ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ рассСяния (RBS) ΠΈΠΎΠ½ΠΎΠ² гСлия ΠΈ ΠΏΡ€ΠΎΡ‚ΠΎΠ½ΠΎΠ², ΡΠΊΠ°Π½ΠΈΡ€ΡƒΡŽΡ‰Π΅ΠΉ элСктронной микроскопии (SEM) с ΠΌΠΈΠΊΡ€ΠΎΠ°Π½Π°Π»ΠΈΠ·Π° (ЭЦП), (WDS), ΠΏΡ€ΠΎΡ‚ΠΎΠ½ΠΎΠ² (ΠΈΠΎΠ½ΠΎΠ²), ΠΈΠ½Π΄ΡƒΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ рСнтгСновского излучСния (PIXE), Ρ€Π΅Π½Ρ‚Π³Π΅Π½ΠΎΡ„Π°Π·ΠΎΠ²ΠΎΠ³ΠΎ Π°Π½Π°Π»ΠΈΠ·Π° (РБА) с Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ ΡΠΊΠΎΠ»ΡŒΠ·ΡΡ‰Π΅Π³ΠΎ падСния (0,5 Π³Ρ€Π°Π΄.), измСрСния нанотвСрдости ΠΈ модуля упругости, трСния износа (Ρ†ΠΈΠ»ΠΈΠ½Π΄Ρ€-пластины), измСрСния коррозионная ΡΡ‚ΠΎΠΉΠΊΠΎΡΡ‚ΡŒ Π² солСвом растворС, ΠΌΡ‹ исслСдовали VT-6 ΠΎΠ±Ρ€Π°Π·Ρ†ΠΎΠ², ΠΈ опрСдСляСтся ΠΈΡ… сопротивлСния усталости ΠΏΡ€ΠΈ цикличСских Π½Π°Π³Ρ€ΡƒΠ·ΠΊΠ°Ρ…. Π‘Ρ‹Π»ΠΎ ΠΎΠ±Π½Π°Ρ€ΡƒΠΆΠ΅Π½ΠΎ Π΄Π²ΠΎΠΉΠ½ΠΎΠ΅ ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠ΅ твСрдости, сниТСниС износа ΠΈ ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠ΅ сопротивлСния усталости, Ρ‡Ρ‚ΠΎ Π±Ρ‹Π»ΠΎ связано с Ρ„ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ малодиспСрсного Π½ΠΈΡ‚Ρ€ΠΈΠ΄Π°, ΠΊΠ°Ρ€Π±ΠΎΠ½ΠΈΡ‚Ρ€ΠΈΠ΄Π°, ΠΈ ΠΈΠ½Ρ‚Π΅Ρ€ΠΌΠ΅Ρ‚Π°Π»Π»ΠΈΠ΄Π½Ρ‹Ρ… Ρ„Π°Π·.The paper presents new results on investigation of structure and physical-mechanical properties of near surface layers of titanium alloys after (W+, Mo+) ion implantation and subsequent thermal annealing under 550 C for 2 h. Using back scattering (RBS) of helium ions and protons, scanning electron microscopy (SEM) with microanalysis (EDS), (WDS), proton (ion) induced X-ray emission (PIXE), X-ray phase analysis (XRD) with a grazing incidence geometry (0.5 angle), measurements of nanohardness and elastic modulus, friction wear (cylinder-plate), measurements of corrosion resistance in a salt solution, we investigated the VT-6 samples, and determined their fatigue resistance under cyclic loads. Double increase of hardness, decrease of wear and increased fatigue resistance were found, which was related to the formation of small dispersion (nanodimension) nitride, carbonitride, and intermetalloid phases
    corecore