80 research outputs found

    Deficiency and haploinsufficiency of histone macroH2A1.1 in mice recapitulate hematopoietic defects of human myelodysplastic syndrome

    Get PDF
    Background: Epigenetic regulation is important in hematopoiesis, but the involvement of histone variants is poorly understood. Myelodysplastic syndromes (MDS) are heterogeneous clonal hematopoietic stem cell (HSC) disorders characterized by ineffective hematopoiesis. MacroH2A1.1 is a histone H2A variant that negatively correlates with the self-renewal capacity of embryonic, adult, and cancer stem cells. MacroH2A1.1 is a target of the frequent U2AF1 S34F mutation in MDS. The role of macroH2A1.1 in hematopoiesis is unclear. Results: MacroH2A1.1 mRNA levels are significantly decreased in patients with low-risk MDS presenting with chromosomal 5q deletion and myeloid cytopenias and tend to be decreased in MDS patients carrying the U2AF1 S34F mutation. Using an innovative mouse allele lacking the macroH2A1.1 alternatively spliced exon, we investigated whether macroH2A1.1 regulates HSC homeostasis and differentiation. The lack of macroH2A1.1 decreased while macroH2A1.1 haploinsufficiency increased HSC frequency upon irradiation. Moreover, bone marrow transplantation experiments showed that both deficiency and haploinsufficiency of macroH2A1.1 resulted in enhanced HSC differentiation along the myeloid lineage. Finally, RNA-sequencing analysis implicated macroH2A1.1-mediated regulation of ribosomal gene expression in HSC homeostasis. Conclusions: Together, our findings suggest a new epigenetic process contributing to hematopoiesis regulation. By combining clinical data with a discrete mutant mouse model and in vitro studies of human and mouse cells, we identify macroH2A1.1 as a key player in the cellular and molecular features of MDS. These data justify the exploration of macroH2A1.1 and associated proteins as therapeutic targets in hematological malignancies

    Clinical experience with the novel histone deacetylase inhibitor vorinostat (suberoylanilide hydroxamic acid) in patients with relapsed lymphoma

    Get PDF
    Preclinical studies indicate that vorinostat (suberoylanilide hydroxamic acid or SAHA) inhibits histone deacetylase (HDAC) activity, increases acetylated histones H2a, H2b, H3, and H4, and thereby induces differentiation and apoptosis in a variety of tumour cell lines, including murine erythroleukaemia, human bladder transitional cell carcinoma, and human breast adenocarcinoma. On the basis of these favourable preclinical findings, vorinostat has been selected as a candidate for clinical development with the potential to treat patients with selected malignances, including Hodgkin's disease and non-Hodgkin's lymphomas. Phase I clinical trials in patients with haematological malignances and solid tumours showed that both intravenous (i.v.) and oral formulations of vorinostat are well tolerated, can inhibit HDAC activity in peripheral blood mononuclear cells and tumour tissue biopsies, and produce objective tumour regression and symptomatic improvement with little clinical toxicity. The dose-limiting toxicities (DLT) of i.v. vorinostat were primarily haematologic and were rapidly reversible within 4–5 days of therapy cessation. In contrast, the DLT for oral vorinostat were primarily non-haematologic (including dehydration, anorexia, diarrhoea, fatigue) and were also rapidly reversible, usually within 3 days. Further research is warranted to optimise the dosing schedule for vorinostat, particularly with respect to dose, timing of administration, and duration of therapy, and to fully delineate the mechanism(s) of antitumour effect of vorinostat in various types of malignances. Several phase II studies are currently ongoing in patients with haematological malignances and solid tumours

    Phosphorylation of Serine 248 of C/EBPα Is Dispensable for Myelopoiesis but Its Disruption Leads to a Low Penetrant Myeloid Disorder with Long Latency

    Get PDF
    BACKGROUND: Transcription factors play a key role in lineage commitment and differentiation of stem cells into distinct mature cells. In hematopoiesis, they regulate lineage-specific gene expression in a stage-specific manner through various physical and functional interactions with regulatory proteins that are simultanously recruited and activated to ensure timely gene expression. The transcription factor CCAAT/enhancer binding protein α (C/EBPα) is such a factor and is essential for the development of granulocytic/monocytic cells. The activity of C/EBPα is regulated on several levels including gene expression, alternative translation, protein interactions and posttranslational modifications, such as phosphorylation. In particular, the phosphorylation of serine 248 of the transactivation domain has been shown to be of crucial importance for granulocytic differentiation of 32Dcl3 cells in vitro. METHODOLOGY/PRINCIPAL FINDINGS: Here, we use mouse genetics to investigate the significance of C/EBPα serine 248 in vivo through the construction and analysis of Cebpa(S248A/S248A) knock-in mice. Surprisingly, 8-week old Cebpa(S248A/S248A) mice display normal steady-state hematopoiesis including unaltered development of mature myeloid cells. However, over time some of the animals develop a hematopoietic disorder with accumulation of multipotent, megakaryocytic and erythroid progenitor cells and a mild impairment of differentiation along the granulocytic-monocytic lineage. Furthermore, BM cells from Cebpa(S248A/S248A) animals display a competitive advantage compared to wild type cells in a transplantation assay. CONCLUSIONS/SIGNIFICANCE: Taken together, our data shows that the substitution of C/EBPα serine 248 to alanine favors the selection of the megakaryocytic/erythroid lineage over the monocytic/granulocytic compartment in old mice and suggests that S248 phosphorylation may be required to maintain proper hematopoietic homeostasis in response to changes in the wiring of cellular signalling networks. More broadly, the marked differences between the phenotype of the S248A variant in vivo and in vitro highlight the need to exert caution when extending in vitro phenotypes to the more appropriate in vivo context

    CEBPA-mutated leukemia is sensitive to genetic and pharmacological targeting of the MLL1 complex

    Get PDF
    The gene encoding the transcription factor C/EBP alpha is mutated in 10-15% of acute myeloid leukemia (AML) patients. N-terminal CEBPA mutations cause ablation of full-length C/EBP alpha without affecting the expression of a shorter oncogenic isoform, termed p30. The mechanistic basis of p30-induced leukemogenesis is incompletely understood. Here, we demonstrate that the MLL1 histone-methyltransferase complex represents a critical actionable vulnerability in CEBPA-mutated AML. Oncogenic C/EBP alpha p30 and MLL1 show global co-localization on chromatin and p30 exhibits robust physical interaction with the MLL1 complex. CRISPR/Cas9-mediated mutagenesis of MLL1 results in proliferation arrest and myeloid differentiation in C/EBP alpha p30-expressing cells. In line, CEBPA-mutated hematopoietic progenitor cells are hypersensitive to pharmacological targeting of the MLL1 complex. Inhibitor treatment impairs proliferation and restores myeloid differentiation potential in mouse and human AML cells with CEBPA mutations. Finally, we identify the transcription factor GATA2 as a direct critical target of the p30-MLL1 interaction. Altogether, we show that C/EBP alpha p30 requires the MLL1 complex to regulate oncogenic gene expression and that CEBPA-mutated AML is hypersensitive to perturbation of the MLL1 complex. These findings identify the MLL1 complex as a potential therapeutic target in AML with CEBPA mutations

    Insights into specificity, redundancy and new cellular functions of C/EBPa and C/EBPb transcription factors through interactome network analysis

    No full text
    BACKGROUND: C/EBPa and C/EBPb are transcription factors with tissue specific expression regulating several important cellular processes. They work by recruiting protein complexes to a common DNA recognition motif and both are able to compensate each other's absence in many cell types, thus showing functional redundancy. They also play distinct roles in specific cellular pathways and their abnormal functioning gives raise to different human pathologies. METHODS: To investigate the molecular basis of C/EBPa and C/EBPb specificity and redundancy we characterized their in vivo protein-protein interaction networks by Tandem Affinity Purification and Mass Spectrometry. To unravel the functional features of C/EBPa and C/EBPb proteomes we studied the statistical enrichment of binding partners related to GO terms and KEGG pathways. RESULTS: Our data confirmed that the C/EBPa and C/EBPb regulate biological processes like cell proliferation, apoptosis and transformation. We found that both C/EBPa and C/EBPb are involved in other cellular pathways such as RNA maturation, RNA splicing and DNA repair. Specific interactions of C/EBPa with MRE11, RUVBL1 and RUVBL2 components of DNA repair system were confirmed by co-immunoprecipitation assays. CONCLUSIONS: Our comparative analysis of the C/EBPa and C/EBPb proteomes provides an insight for understanding both their redundant and specific roles in cells indicating their involvement in new pathways. Such novel predicted functions are relevant to normal cellular processes and disease phenotypes controlled by these transcription factors. GENERAL SIGNIFICANCE: Functional characterization of C/EBPa and C/EBPb proteomes suggests they can regulate novel pathways and indicate potential molecular targets for therapeutic intervention

    Pontin is essential for murine hematopoietic stem cell survival.

    No full text
    Pontin is a highly conserved DNA helicase/ATPase which is a component of several macromolecular complexes with functions that include DNA repair, telomere maintenance and tumor suppression. While Pontin is known to be essential in yeast, fruit flies and frogs, its physiological role in mammalian organisms remains to be determined. We here find that Pontin is highly expressed in embryonic stem cells and hematopoietic tissues. Through germline inactivation of Ruvbl1, the gene encoding Pontin, we found it to be essential for early embryogenesis, as Ruvbl1 null embryos could not be recovered beyond the blastocyst stage where proliferation of the pluripotent inner cell mass was impaired. Conditional ablation of Ruvbl1 in hematopoietic tissues led to bone marrow failure. Competitive repopulation experiments showed that this included the loss of hematopoietic stem cells through apopotosis. Pontin is, therefore, essential for the function of both embryonic pluripotent cells and adult hematopoietic stem cells

    Pontin is essential for murine hematopoietic stem cell survival.

    No full text
    Pontin is a highly conserved DNA helicase/ATPase which is a component of several macromolecular complexes with functions that include DNA repair, telomere maintenance and tumor suppression. While Pontin is known to be essential in yeast, fruit flies and frogs, its physiological role in mammalian organisms remains to be determined. We here find that Pontin is highly expressed in embryonic stem cells and hematopoietic tissues. Through germline inactivation of Ruvbl1, the gene encoding Pontin, we found it to be essential for early embryogenesis, as Ruvbl1 null embryos could not be recovered beyond the blastocyst stage where proliferation of the pluripotent inner cell mass was impaired. Conditional ablation of Ruvbl1 in hematopoietic tissues led to bone marrow failure. Competitive repopulation experiments showed that this included the loss of hematopoietic stem cells through apopotosis. Pontin is, therefore, essential for the function of both embryonic pluripotent cells and adult hematopoietic stem cells

    Molecular and cellular effects of oncogene cooperation in a genetically accurate AML mouse model.

    No full text
    Biallelic CEBPA mutations and FMS-like tyrosine kinase receptor 3 (FLT3) length mutations are frequently identified in human acute myeloid leukemia (AML) with normal cytogenetics. However, the molecular and cellular mechanisms of oncogene cooperation remain unclear because of a lack of disease models. We have generated an AML mouse model using knockin mouse strains to study cooperation of an internal tandem duplication (ITD) mutation in the Flt3 gene with commonly observed CCAAT/enhancer binding protein alpha (C/EBPα) mutations. This study provides evidence that FLT3 ITD cooperates in leukemogenesis by enhancing the generation of leukemia-initiating granulocyte-monocyte progenitors (GMPs) otherwise prevented by a block in differentiation and skewed lineage priming induced by biallelic C/EBPα mutations. These cellular changes are accompanied by an upregulation of hematopoietic stem cell and STAT5 target genes. By gene expression analysis in premalignant populations, we further show a role of FLT3 ITD in activating genes involved in survival/transformation and chemoresistance. Both multipotent progenitors and GMP cells contain the potential to induce AML similar to corresponding cells in human AML samples showing that this model resembles human disease
    • …
    corecore