143 research outputs found

    Seed tuber imprinting shapes the next-generation potato microbiome

    Get PDF
    Potato seed tubers are colonized and inhabited by soil-borne microbes, some of which can positively or negatively impact the performance of the emerging daughter plant in the next season. In this study, we investigated the intergenerational inheritance of microbiota from seed tubers to next-season daughter plants by amplicon sequencing of bacterial and fungal microbiota associated with tubers and roots of two seed potato genotypes produced in six different fields. We observed that field of production and potato genotype significantly affected the seed tuber microbiome composition and that these differences persisted during winter storage of the seed tubers. When seed tubers from different production fields were planted in a single trial field, the microbiomes of daughter tubers and roots of the emerging plants could still be distinguished according to the field of origin of the seed tuber. Remarkably, we found little evidence of direct vertical inheritance of field-unique microbes from the seed tuber to the daughter tubers or roots. Hence, we hypothesize that this intergenerational memory is imprinted in the seed tuber, resulting in differential microbiome assembly strategies depending on the field of production of the seed tuber

    Inactivation of the transforming growth factor β type II receptor in human small cell lung cancer cell lines

    Get PDF
    Transforming growth factor β (TGF-β) exerts a growth inhibitory effect on many cell types through binding to two types of receptors, the type I and II receptors. Resistance to TGF-β due to lack of type II receptor (RII) has been described in some cancer types including small cell lung cancer (SCLC). The purpose of this study was to examine the cause of absent RII expression in SCLC cell lines. Northern blot analysis showed that RII RNA expression was very weak in 16 of 21 cell lines. To investigate if the absence of RII transcript was due to mutations, we screened the poly-A tract for mutations, but no mutations were detected. Additional screening for mutations of the RII gene revealed a GG to TT base substitution in one cell line, which did not express RII. This mutation generates a stop codon resulting in predicted synthesis of a truncated RII of 219 amino acids. The nature of the mutation, which has not previously been observed in RII, has been linked to exposure to benzo[a]-pyrene, a component of cigarette smoke. Since RII has been mapped to chromosome 3p22 and nearby loci are often hypermethylated in SCLC, it was examined whether the lack of RII expression was due to hypermethylation. Southern blot analysis of the RII promoter did not show altered methylation patterns. The restriction endonuclease pattern of the RII gene was altered in two SCLC cell lines when digested with Sma 1. However, treatment with 5-aza-2′-deoxycytidine did not induce expression of RII mRNA. Our results indicate that in SCLC lack of RII mRNA is not commonly due to mutations and inactivation of RII transcription was not due to hypermethylation of the RII promoter or gene. Thus, these data show that in most cases of the SCLC cell lines, the RII gene and promoter is intact in spite of absent RII expression. However, the nature of the mutation found could suggest that it was caused by cigarette smoking. © 1999 Cancer Research Campaig

    A membrane-inserted structural model of the yeast mitofusin Fzo1

    Get PDF
    Mitofusins are large transmembrane GTPases of the dynamin-related protein family, and are required for the tethering and fusion of mitochondrial outer membranes. Their full-length structures remain unknown, which is a limiting factor in the study of outer membrane fusion. We investigated the structure and dynamics of the yeast mitofusin Fzo1 through a hybrid computational and experimental approach, combining molecular modelling and all-atom molecular dynamics simulations in a lipid bilayer with site-directed mutagenesis and in vivo functional assays. The predicted architecture of Fzo1 improves upon the current domain annotation, with a precise description of the helical spans linked by flexible hinges, which are likely of functional significance. In vivo site-directed mutagenesis validates salient aspects of this model, notably, the long-distance contacts and residues participating in hinges. GDP is predicted to interact with Fzo1 through the G1 and G4 motifs of the GTPase domain. The model reveals structural determinants critical for protein function, including regions that may be involved in GTPase domain-dependent rearrangements

    Accessing a Hidden Conformation of the Maltose Binding Protein Using Accelerated Molecular Dynamics

    Get PDF
    Periplasmic binding proteins (PBPs) are a large family of molecular transporters that play a key role in nutrient uptake and chemotaxis in Gram-negative bacteria. All PBPs have characteristic two-domain architecture with a central interdomain ligand-binding cleft. Upon binding to their respective ligands, PBPs undergo a large conformational change that effectively closes the binding cleft. This conformational change is traditionally viewed as a ligand induced-fit process; however, the intrinsic dynamics of the protein may also be crucial for ligand recognition. Recent NMR paramagnetic relaxation enhancement (PRE) experiments have shown that the maltose binding protein (MBP) - a prototypical member of the PBP superfamily - exists in a rapidly exchanging (ns to µs regime) mixture comprising an open state (approx 95%), and a minor partially closed state (approx 5%). Here we describe accelerated MD simulations that provide a detailed picture of the transition between the open and partially closed states, and confirm the existence of a dynamical equilibrium between these two states in apo MBP. We find that a flexible part of the protein called the balancing interface motif (residues 175–184) is displaced during the transformation. Continuum electrostatic calculations indicate that the repacking of non-polar residues near the hinge region plays an important role in driving the conformational change. Oscillations between open and partially closed states create variations in the shape and size of the binding site. The study provides a detailed description of the conformational space available to ligand-free MBP, and has implications for understanding ligand recognition and allostery in related proteins

    Roles of Electrostatics and Conformation in Protein-Crystal Interactions

    Get PDF
    In vitro studies have shown that the phosphoprotein osteopontin (OPN) inhibits the nucleation and growth of hydroxyapatite (HA) and other biominerals. In vivo, OPN is believed to prevent the calcification of soft tissues. However, the nature of the interaction between OPN and HA is not understood. In the computational part of the present study, we used molecular dynamics simulations to predict the adsorption of 19 peptides, each 16 amino acids long and collectively covering the entire sequence of OPN, to the {100} face of HA. This analysis showed that there is an inverse relationship between predicted strength of adsorption and peptide isoelectric point (P<0.0001). Analysis of the OPN sequence by PONDR (Predictor of Naturally Disordered Regions) indicated that OPN sequences predicted to adsorb well to HA are highly disordered. In the experimental part of the study, we synthesized phosphorylated and non-phosphorylated peptides corresponding to OPN sequences 65–80 (pSHDHMDDDDDDDDDGD) and 220–235 (pSHEpSTEQSDAIDpSAEK). In agreement with the PONDR analysis, these were shown by circular dichroism spectroscopy to be largely disordered. A constant-composition/seeded growth assay was used to assess the HA-inhibiting potencies of the synthetic peptides. The phosphorylated versions of OPN65-80 (IC50 = 1.93 µg/ml) and OPN220-235 (IC50 = 1.48 µg/ml) are potent inhibitors of HA growth, as is the nonphosphorylated version of OPN65-80 (IC50 = 2.97 µg/ml); the nonphosphorylated version of OPN220-235 has no measurable inhibitory activity. These findings suggest that the adsorption of acidic proteins to Ca2+-rich crystal faces of biominerals is governed by electrostatics and is facilitated by conformational flexibility of the polypeptide chain

    Immunocytochemical assessment of bone marrow aspirates for monitoring response to chemotherapy in small-cell lung cancer patients

    Get PDF
    Recent reports have suggested that tumour cell immunodetection in bone marrow of small-cell lung cancer patients is by far more frequent than found cytohistologically and may have clinical relevance. This study evaluates primarily the efficacy of chemotherapy as method of in vivo purging, but also the relationship of marrow involvement with survival. A total of 112 bone marrow aspirates from 30 chemo-naïve patients were stained twice using anti-NCAM antibodies, first at diagnosis and then after chemotherapy (24 patients) or at disease progression (six patients). Marrow contamination was associated with lower survival (P = 0.002), and was also detected in 7/17 patients conventionally staged as having limited disease. At multivariate analysis, marrow involvement was an independent factor of unfavourable prognosis (P = 0.033). The amount of tumour contamination, before and after chemotherapy, remained unchanged also in responders and even in the subset of patients with apparent limited disease. Following chemotherapy, bone marrow became tumour negative only in 25% of initially positive responders and in none of non-responders. Our results indicate that (i) chemotherapy is not effective in purging bone marrow even in chemo-responsive patients and (ii) a subset of patients with limited disease and negative bone marrow aspirates might have a more favourable prognosis. © 1999 Cancer Research Campaig

    Folic acid supplementation in postmenopausal women with hot flushes: phase III randomised double-blind placebo-controlled trial

    Get PDF
    Objective To assess whether folic acid supplementation ameliorates hot flushes. Design Double-blind, placebo-controlled randomised trial. Setting Nine hospitals in England. Population Postmenopausal women experiencing ≥50 hot flushes weekly. Methods Women (n = 164) were randomly assigned in a 1:1 ratio to receive folic acid 5 mg tablet or placebo daily for 12 weeks. Participants recorded frequency and severity of hot flushes in a Sloan Diary daily and completed Greene Climacteric and Utian Quality of Life (UQoL) Scales at 4-week intervals. Main outcome measures The change in daily Hot Flush Score at week 12 from randomisation based on Sloan Diary Composite Score B calculation. Results Data of 143 (87%) women were available for the primary outcome. The mean change (SD) in Hot Flush Score at week 12 was −6.98 (10.30) and −4.57 (9.46) for folic acid and placebo group, respectively. The difference between groups in the mean change was −2.41 (95% CI −5.68 to 0.87) (P = 0.149) and in the adjusted mean change −2.61 (95% CI −5.72 to 0.49) (P = 0.098). Analysis of secondary outcomes indicated an increased benefit in the folic acid group regarding changes in total and emotional UQoL scores at week 8 when compared with placebo. The difference in the mean change from baseline was 5.22 (95% CI 1.16–9.28) and 1.88 (95% CI 0.23–3.52) for total and emotional score, respectively. Conclusions The study was not able to demonstrate that folic acid had a statistically significant greater benefit in reducing Hot Flush Score over 12 weeks in postmenopausal women when compared with placebo. Tweetable abstract Folic acid may ameliorate hot flushes in postmenopausal women but confirmation is required from a larger study

    Three-way interaction among plants, bacteria, and coleopteran insects

    Get PDF
    corecore