14 research outputs found

    The Next Step to Further Decrease Veterinary Antibiotic Applications : Phytogenic Alternatives and Effective Monitoring; the Dutch Approach

    Get PDF
    Antibiotics are used to control infectious diseases in both animals and humans. They can be life-saving compounds but excessive use in animal husbandry leads to the development of antibiotic resistance which can impact the public health. Since similar antibiotics are used in both animal and human healthcare, it is important to reduce the use of antibiotics in production animals. In the Netherlands policies have been developed aiming for a decrease of antibiotic usage in animals, and alternatives to antibiotics are investigated. Currently, a one-on-one relationship between farmer and veterinarian is successfully implemented and (national) registration of antibiotic usage is mandatory. Unfortunately, after a 70% decrease in antibiotic usage since 2009, this decrease is now stagnating in most sectors. Innovative strategies are required to facilitate a further reduction. One promising option is a focus on farm management and natural alternatives to antibiotics. The Dutch government has invested in the spread of knowledge of natural remedies and good animal management to support animal health via so called Barnbooks for farmers and veterinarians. Another option is the analysis of on-farm antibiotic use to prevent unregistered applications. New (bio)analytical strategies to monitor the correct and complete registration of antibiotic usage have been developed and trial-tested in the Netherlands. Such strategies support a risk-based monitoring and allow effective selection of high-risk (high antibiotic use or illegal antibiotic) users. Both effective monitoring and the availability and knowledge of alternatives is a prerequisite to achieve a further significant decrease in antibiotic veterinary usage

    Occurrence of chloramphenicol in cereal straw in north-western Europe

    No full text
    Two surveys are presented of straw analysed for naturally occurring chloramphenicol (CAP), a drug banned for use in food-producing animals. In the first study, CAP was analysed by LC-MS/MS and detected in 37 out of 105 straw samples originating from the Netherlands, France, the UK, Germany and Denmark. The highest level found was 6.3 µg kg−1, the average 0.6 µg kg−1 and the median 0.2 µg kg−1. The second study included a method comparison between ELISA and LC-MS/MS and a survey of CAP in cereal straw sampled at farms in all areas of Sweden. A total of 215 samples were screened by ELISA and a subset of 26 samples was also analysed by LC-MS/MS. Fifty-four of the samples contained more than 1 µg kg−1 CAP and the highest level found was 32 µg kg−1 (confirmed by LC-MS/MS). The highest contents of CAP in this study were allocated to the Baltic sea coast in the south-eastern part of Sweden (the county of Skåne and the Baltic Sea isle of Gotland). These results indicate a high incidence of CAP in straw in north-west Europe and have a severe impact on the enforcement of European Union legislation.</p

    Non-targeted identification of per- and polyfluoroalkyl substances at trace level in surface water using fragment ion flagging

    No full text
    The extent of unidentified Per- and Poly-fluoroalkyl substances (PFASs) found in environmental samples has led to the development of non-targeted screening methods. The study presented here reports the use of liquid chromatography hyphenated with high resolution mass spectrometry to detect and identify unknown and unexpected PFASs by fragment ion flagging (FIF). By exploring all ion fragmentation spectra for several characteristic fragments including CnF2n+1−, CnF2n-1−, CnF2n-3−, CnF2n-7−, CnF2n-11− and CnF2n+1O− the presence of widely different PFAS species can be anticipated without the need for targeted screening methods. These fragments are then related to their precursor ion by retention time matching and subsequently identified. With this methodology 40 PFASs were (tentatively) identified in four surface water samples sampled throughout the Netherlands. To the best of the authors’ knowledge, four PFASs found through FIF are newly discovered species and have not been mentioned in any database or literature. This methodology eliminates the dependence on commonly reported full scan feature selection techniques such as mass defect filtering, homologous series detection and intensity threshold filtering, allowing the identification of PFASs at trace levels. Additionally, eight of the (tentatively) identified PFASs are not part of homologous series, stressing the shortcomings of commonly reported non-targeted PFASs screening methods and demonstrating the importance of more effective identification strategies such as FIF. Moreover, we like to emphasise that this approach is applicable to real-life environmental samples with PFASs at background concentration levels.</p

    The vertical transmission of antibiotic residues from parent hens to broilers

    No full text
    Imprudent and superfluous use of antibiotics contributes to the selection of resistant bacteria, which is a large threat to human health. Therefore analytical procedures have been implemented in the poultry production sector to check if antibiotic treatments are registered, aiming to achieve more prudent use of antibiotics. These methods rely on the analysis of feathers, a matrix in which antibiotic residues persist. However, other routes besides direct administration, through which poultry feathers could contain antibiotic residues, should also be taken into account. In this research the vertical transmission from parent hen to broiler was investigated through a controlled animal study for the antibiotics enrofloxacin, doxycycline and sulfachlorpyridazine. Vertical transmission was observed for all antibiotics to both egg and egg shell. Also it is demonstrated that the transferred antibiotics from parent hen to chick are subsequently excreted via the chick’s droppings. Through this route, the broilers’ environment is contaminated. If eggs are hatched that were taken during treatment of the parent hen, this indirect route and/or the direct vertical transmission can eventually result in the detection of low concentrations of antibiotic residues in the broilers’ feathers at greater age: −1 for freely extractable residues and −1 for non-freely extractable residues. No antibiotics were detected in the broilers’ muscle or kidney from 4 weeks of age. This research provides relevant information regarding the possible amount of residues originating from vertical transmission when monitoring matrices such as feathers and broiler droppings in order to stimulate correct use and registration of antibiotics in the poultry sector.</p

    The analysis of tetracyclines, quinolones, macrolides, lincosamides, pleuromutilins, and sulfonamides in chicken feathers using UHPLC-MS/MS in order to monitor antibiotic use in the poultry sector

    No full text
    In The Netherlands, all antibiotic treatments should be registered at the farm and in a central database. To enforce correct antibiotic use and registration, and to enforce prudent use of antibiotics, there is a need for methods that are able to detect antibiotic treatments. Ideally, such a method is able to detect antibiotic applications during the entire lifespan of an animal, including treatments administered during the first days of the animals’ lives. Monitoring tissue, as is common practice, only provides a limited window of opportunity, as residue levels in tissue soon drop below measurable quantities. The analysis of feathers proves to be a promising tool in this respect. Furthermore, a qualitative confirmatory method was developed for the analyses of six major groups of antibiotics in ground chicken feathers, aiming for a detection limit as low as reasonably possible. The method was validated according to Commission Decision 2002/657/EC. All compounds comply with the criteria and, as a matter of fact, 58% of the compounds could also be quantified according to regulations. Additionally, we demonstrated that a less laborious method, in which whole feathers were analyzed, proved successful in the detection of applied antibiotics. Most compounds could be detected at levels of 2 μg kg−1 or below with the exception of sulfachloropyridazine, tylosin, and tylvalosin. This demonstrates the effectiveness of feather analysis to detect antibiotic use to allow effective enforcement of antibiotic use and prevent the illegal, off-label, and nonregistered use of antibiotics

    A global inter-laboratory study to assess acquisition modes for multi-compound confirmatory analysis of veterinary drugs using liquid chromatography coupled to triple quadrupole, time of flight and orbitrap mass spectrometry

    No full text
    According to EU legislation a confirmatory method used for residue analysis should be able to confirm the identity of a compound beyond reasonable doubt. To provide an adequate instrumental set-up, Commission Decision 2002/657/EC introduced the concept of "identification points". A second aspect to assure unequivocal confirmation, is the establishment of ion ratio and retention time criteria. Currently, the gold standard for confirmatory analysis of most veterinary drug residues is liquid chromatography (LC) coupled to tandem mass spectrometry (MS/MS) in selected reaction monitoring (SRM) acquisition mode, isolating one precursor ion and monitoring two a priori selected product ions, yielding 4 identification points. We comprehensively evaluated the use of different low and high resolution LC-MS(/MS) techniques and acquisition modes with respect to the selectivity of 100 veterinary drugs in liver, muscle and urine extracts aiming to critically review the currently established identification points system. A comparison among MS/MS in SRM mode with high resolution mass spectrometry (HRMS) in full scan, all ion fragmentation and targeted MS/MS was made based on a unique inter-laboratory study, which comprises 21 laboratories from four different continents and equipment from all major vendors.In total 186 samples were analysed yielding results for 9282 analyte/matrix combinations. It was observed that the false positive rate approximately doubles if no ion ratio criterion is applied indicating that this criterion is important to prevent false positive results. Full scan HRMS analysis, only monitoring the molecular ion and allowing a ±5 ppm mass tolerance is, in general, less selective than low resolution MS/MS using SRM, and thus full scan alone is considered not sufficient for confirmatory analysis. Furthermore, even though the number of data on all ion fragmentation and targeted MS/MS at high resolution was limited, based on the data obtained, it was observed that the acquisition mode as well as the mass resolution needed, very much depend on the matrix and the compound itself. For complex matrix extracts and non-selective compounds (worst-case situation), only targeted MS/MS, monitoring the precursor ion and a single product ion in HR-MS using a maximum of ±5 ppm mass deviation, leads to comparable selectivity and false positive and negative rate as SRM monitoring two product ions in LR-MS. We conclude that the currently applied identification point system as established in commission decision 2002/657/EC should be revised with respect to the allocation of identification points

    A global inter-laboratory study to assess acquisition modes for multi-compound confirmatory analysis of veterinary drugs using liquid chromatography coupled to triple quadrupole, time of flight and orbitrap mass spectrometry

    No full text
    According to EU legislation a confirmatory method used for residue analysis should be able to confirm the identity of a compound beyond reasonable doubt. To provide an adequate instrumental set-up, Commission Decision 2002/657/EC introduced the concept of "identification points". A second aspect to assure unequivocal confirmation, is the establishment of ion ratio and retention time criteria. Currently, the gold standard for confirmatory analysis of most veterinary drug residues is liquid chromatography (LC) coupled to tandem mass spectrometry (MS/MS) in selected reaction monitoring (SRM) acquisition mode, isolating one precursor ion and monitoring two a priori selected product ions, yielding 4 identification points. We comprehensively evaluated the use of different low and high resolution LC-MS(/MS) techniques and acquisition modes with respect to the selectivity of 100 veterinary drugs in liver, muscle and urine extracts aiming to critically review the currently established identification points system. A comparison among MS/MS in SRM mode with high resolution mass spectrometry (HRMS) in full scan, all ion fragmentation and targeted MS/MS was made based on a unique inter-laboratory study, which comprises 21 laboratories from four different continents and equipment from all major vendors.In total 186 samples were analysed yielding results for 9282 analyte/matrix combinations. It was observed that the false positive rate approximately doubles if no ion ratio criterion is applied indicating that this criterion is important to prevent false positive results. Full scan HRMS analysis, only monitoring the molecular ion and allowing a ±5 ppm mass tolerance is, in general, less selective than low resolution MS/MS using SRM, and thus full scan alone is considered not sufficient for confirmatory analysis. Furthermore, even though the number of data on all ion fragmentation and targeted MS/MS at high resolution was limited, based on the data obtained, it was observed that the acquisition mode as well as the mass resolution needed, very much depend on the matrix and the compound itself. For complex matrix extracts and non-selective compounds (worst-case situation), only targeted MS/MS, monitoring the precursor ion and a single product ion in HR-MS using a maximum of ±5 ppm mass deviation, leads to comparable selectivity and false positive and negative rate as SRM monitoring two product ions in LR-MS. We conclude that the currently applied identification point system as established in commission decision 2002/657/EC should be revised with respect to the allocation of identification points.</p

    Non-targeted workflow for identification of antimicrobial compounds in animal feed using bioassay-directed screening in combination with liquid chromatography-high resolution mass spectrometry

    No full text
    A non-targeted workflow is reported for the isolation and identification of antimicrobial active compounds using bioassay-directed screening and LC coupled to high-resolution MS. Suspect samples are extracted using a generic protocol and fractionated using two different LC conditions (A and B). The behaviour of the bioactive compound under these different conditions yields information about the physicochemical properties of the compound and introduces variations in co-eluting compounds in the fractions, which is essential for peak picking and identification. The fractions containing the active compound(s) obtained with conditions A and B are selected using a microbiological effect-based bioassay. The selected bioactive fractions from A and B are analysed using LC combined with high-resolution MS. Selection of relevant signals is automatically carried out by selecting all signals present in both bioactive fractions A and B, yielding tremendous data reduction. The method was assessed using two spiked feed samples and subsequently applied to two feed samples containing an unidentified compound showing microbial growth inhibition. In all cases, the identity of the compound causing microbiological inhibition was successfully confirmed

    Novel Selectivity-Based Forensic Toxicological Validation of a Paper Spray Mass Spectrometry Method for the Quantitative Determination of Eight Amphetamines in Whole Blood

    No full text
    Paper spray tandem mass spectrometry is used to identify and quantify eight individual amphetamines in whole blood in 1.3 min. The method has been optimized and fully validated according to forensic toxicology guidelines, for the quantification of amphetamine, methamphetamine, 3,4-methylenedioxyamphetamine (MDA), 3,4-methylenedioxy-N-methylamphetamine (MDMA), 3,4-methylenedioxy-N-ethylamphetamine (MDEA), para-methoxyamphetamine (PMA), para-methoxymethamphetamine (PMMA), and 4-fluoroamphetamine (4-FA). Additionally, a new concept of intrinsic and application-based selectivity is discussed, featuring increased confidence in the power to discriminate the amphetamines from other chemically similar compounds when applying an ambient mass spectrometric method without chromatographic separation. Accuracy was within ±15% and average precision was better than 15%, and better than 20% at the LLOQ. Detection limits between 15 and 50 ng/mL were obtained using only 12 μL of whole blood. [Figure not available: see fulltext.]
    corecore