269 research outputs found

    Fakeons, quantum gravity and the correspondence principle

    Full text link
    The correspondence principle made of unitarity, locality and renormalizability has been very successful in quantum field theory. Among the other things, it helped us build the standard model. However, it also showed important limitations. For example, it failed to restrict the gauge group and the matter sector in a powerful way. After discussing its effectiveness, we upgrade it to make room for quantum gravity. The unitarity assumption is better understood, since it allows for the presence of physical particles as well as fake particles (fakeons). The locality assumption is applied to an interim classical action, since the true classical action is nonlocal and emerges from the quantization and a later process of classicization. The renormalizability assumption is refined to single out the special role of the gauge couplings. We show that the upgraded principle leads to an essentially unique theory of quantum gravity. In particular, in four dimensions, a fakeon of spin 2, together with a scalar field, is able to make the theory renormalizable while preserving unitarity. We offer an overview of quantum field theories of particles and fakeons in various dimensions, with and without gravity.Comment: Proceedings of the conference "Progress and Visions in Quantum Theory in View of Gravity: Bridging foundations of physics and mathematics", Max Planck Institute for Mathematics in the Sciences, Leipzig, October 2018 - to appear in a book with the same title edited by F. Finster, D. Giulini, J. Kleiner and J. Tolksdorf - 21 page

    Dual Identities inside the Gluon and the Graviton Scattering Amplitudes

    Full text link
    Recently, Bern, Carrasco and Johansson conjectured dual identities inside the gluon tree scattering amplitudes. In this paper, we use the properties of the heterotic string and open string tree scattering amplitudes to refine and derive these dual identities. These identities can be carried over to loop amplitudes using the unitarity method. Furthermore, given the MM-gluon (as well as gluon-gluino) tree amplitudes, MM-graviton (as well as graviton-gravitino) tree scattering amplitudes can be written down immediately, avoiding the derivation of Feynman rules and the evaluation of Feynman diagrams for graviton scattering amplitudes.Comment: 43 pages, 3 figures; typos corrected, a few points clarified

    Spin 3 cubic vertices in a frame-like formalism

    Full text link
    Till now most of the results on interaction vertices for massless higher spin fields were obtained in a metric-like formalism using completely symmetric (spin-)tensors. In this, the Lagrangians turn out to be very complicated and the main reason is that the higher the spin one want to consider the more derivatives one has to introduce. In this paper we show that such investigations can be greatly simplified if one works in a frame-like formalism. As an illustration we consider massless spin 3 particle and reconstruct a number of vertices describing its interactions with lower spin 2, 1 and 0 ones. In all cases considered we give explicit expressions for the Lagrangians and gauge transformations and check that the algebra of gauge transformations is indeed closed.Comment: 17 pades, no figure

    Spinor Helicity and Dual Conformal Symmetry in Ten Dimensions

    Full text link
    The spinor helicity formalism in four dimensions has become a very useful tool both for understanding the structure of amplitudes and also for practical numerical computation of amplitudes. Recently, there has been some discussion of an extension of this formalism to higher dimensions. We describe a particular implementation of the spinor-helicity method in ten dimensions. Using this tool, we study the tree-level S-matrix of ten dimensional super Yang-Mills theory, and prove that the theory enjoys a dual conformal symmetry. Implications for four-dimensional computations are discussed.Comment: 24 pages, 1 figure

    Optimal use of Information for Measuring MtM_t in Lepton+jets ttˉt\bar{t} Events

    Full text link
    We present a novel approach that is being developed at DZero for extracting information from data through a direct comparison of all measured variables in an event with a matrix element that describes the entire production process. The method is exemplified in the extraction of the mass of the top quark in top-antitop events in the lepton+jets final state. Monte Carlo studies suggest that an improvement of about a factor of two in statistical uncertainty on the mass of the top quark can be achieved relative to previously published work for the same channel. Preliminary results from the re-analysis provide a reduction in the statistical uncertainty of almost a factor of 1.6, corresponding to an effective factor of 2.4 increase in the size of the data sample.Comment: presented at HCP200

    Boundary Contributions Using Fermion Pair Deformation

    Full text link
    Continuing the study of boundary BCFW recursion relation of tree level amplitudes initiated in \cite{Feng:2009ei}, we consider boundary contributions coming from fermion pair deformation. We present the general strategy for these boundary contributions and demonstrate calculations using two examples, i.e, the standard QCD and deformed QCD with anomalous magnetic momentum coupling. As a by-product, we have extended BCFW recursion relation to off-shell gluon current, where because off-shell gluon current is not gauge invariant, a new feature must be cooperated.Comment: 26 pages, 4 figure

    Leptogenesis from loop effects in curved spacetime

    Get PDF
    We describe a new mechanism -- radiatively-induced gravitational leptogenesis -- for generating the matter-antimatter asymmetry of the Universe. We show how quantum loop effects in C and CP violating theories cause matter and antimatter to propagate differently in the presence of gravity, and prove this is forbidden in flat space by CPT and translation symmetry. This generates a curvature-dependent chemical potential for leptons, allowing a matter-antimatter asymmetry to be generated in thermal equilibrium in the early Universe. The time-dependent dynamics necessary for leptogenesis is provided by the interaction of the virtual self-energy cloud of the leptons with the expanding curved spacetime background, which violates the strong equivalence principle and allows a distinction between matter and antimatter. We show here how this mechanism is realised in a particular BSM theory, the see-saw model, where the quantum loops involve the heavy sterile neutrinos responsible for light neutrino masses. We demonstrate by explicit computation of the relevant two-loop Feynman diagrams how the size of the radiative corrections relevant for leptogenesis becomes enhanced by increasing the mass hierarchy of the sterile neutrinos, and show that for realistic phenomenological parameters this mechanism can generate the observed baryon-to-photon ratio of the Universe

    Analyticity, Unitarity and One-loop Graviton Corrections to Compton Scattering

    Full text link
    We compute spin-flip cross section for graviton photoproduction on a spin-1/2 target of finite mass. Using this tree-level result, we find one-loop graviton correction to the spin-flip low-energy forward Compton scattering amplitude by using Gerasimov-Drell-Hearn sum rule. We show that this result agrees with the corresponding perturbative computations, implying the validity of the sum rule at one-loop level, contrary to the previous claims. We discuss possible effects from the black hole production and string Regge trajectory exchange at very high energies. These effects seem to soften the UV divergence present at one-loop graviton level. Finally, we discuss the relation of these observations with the models that involve extra dimensions.Comment: 15 pages, 3 figure

    Using gamma+jets Production to Calibrate the Standard Model Z(nunu)+jets Background to New Physics Processes at the LHC

    Full text link
    The irreducible background from Z(nunu)+jets, to beyond the Standard Model searches at the LHC, can be calibrated using gamma+jets data. The method utilises the fact that at high vector boson pT, the event kinematics are the same for the two processes and the cross sections differ mainly due to the boson-quark couplings. The method relies on a precise prediction from theory of the Z/gamma cross section ratio at high pT, which should be insensitive to effects from full event simulation. We study the Z/gamma ratio for final states involving 1, 2 and 3 hadronic jets, using both the leading-order parton shower Monte Carlo program Pythia8 and a leading-order matrix element program Gambos. This enables us both to understand the underlying parton dynamics in both processes, and to quantify the theoretical systematic uncertainties in the ratio predictions. Using a typical set of experimental cuts, we estimate the net theoretical uncertainty in the ratio to be of order 7%, when obtained from a Monte Carlo program using multiparton matrix-elements for the hard process. Uncertainties associated with full event simulation are found to be small. The results indicate that an overall accuracy of the method, excluding statistical errors, of order 10% should be possible.Comment: 22 pages, 14 figures; Accepted for publication by JHE
    corecore