14 research outputs found

    Radiocarbon content of dissolved organic carbon in the South Indian Ocean

    Get PDF
    Author Posting. © American Geophysical Union, 2018. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 45 (2018): 872–879, doi:10.1002/2017GL076295.We report four profiles of the radiocarbon content of dissolved organic carbon (DOC) spanning the South Indian Ocean (SIO), ranging from the Polar Front (56°S) to the subtropics (29°S). Surface waters held mean DOC Δ14C values of −426 ± 6‰ (~4,400 14C years) at the Polar Front and DOC Δ14C values of −252 ± 22‰ (~2,000 14C years) in the subtropics. At depth, Circumpolar Deep Waters held DOC Δ14C values of −491 ± 13‰ (~5,400 years), while values in Indian Deep Water were more depleted, holding DOC Δ14C values of −503 ± 8‰ (~5,600 14C years). High-salinity North Atlantic Deep Water intruding into the deep SIO had a distinctly less depleted DOC Δ14C value of −481 ± 8‰ (~5,100 14C years). We use multiple linear regression to assess the dynamics of DOC Δ14C values in the deep Indian Ocean, finding that their distribution is characteristic of water masses in that region.National Science Foundation (NSF) Grant Numbers: OPP-1142117, OCE-14367482018-07-2

    Processes in the surface ocean regulate dissolved organic matter distributions in the deep

    Get PDF
    Marine dissolved organic matter (DOM) is a major global carbon pool, consisting of thousands of compounds with distinct lifetimes. While marine DOM persists for millennia, its molecular and isotopic composition imply that it is dynamic on shorter timescales. To determine the extent to which DOM deviates from conservative water mass mixing, we conducted a two-endmember mixing analysis on dissolved organic carbon (DOC) concentration and DOM molecular composition in the Atlantic and Pacific. Endmembers were the deep water masses near their formation sites. For DOM composition, we considered 6118 molecular formulae (MF) identified via Fourier-transform ion cyclotron resonance mass spectrometry in solid-phase extracts (SPE) of 837 samples. Bulk DOC and SPE-DOC concentrations behaved conservatively in both basins and ≥70% of the MF (14–20 μM SPE-DOC) mixed conservatively. However, a small fraction (10%–20%) of the MF (<3 μM SPE-DOC) were added or removed during mixing. These MF were more reduced and oxidized, respectively, than the conservative fraction. There were also MF absent from the endmembers; these accounted for ≤1 μM of SPE-DOC and positively correlated with DOM lability. Based on their distribution across the two basins, we conclude that the conserved MF are formed in the surface subtropical ocean and modified in overturning areas. In the deep ocean, however, these MF are solely controlled by mixing. This finding contrasts with the current paradigm of slow, continuous degradation of recalcitrant DOM in the deep ocean. Our analysis illustrates the importance of the surface ocean in controlling DOM cycling in the deep

    Disentangling Biological Transformations and Photodegradation Processes from Marine Dissolved Organic Matter Composition in the Global Ocean

    Get PDF
    Dissolved organic matter (DOM) holds the largest amount of organic carbon in the ocean, with most of it residing in the deep for millennia. Specific mechanisms and environmental conditions responsible for its longevity are still unknown. Microbial transformations and photochemical degradation of DOM in the surface layers are two processes that shape its molecular composition. We used molecular data (via Fourier transform ion cyclotron resonance mass spectrometry) from two laboratory experiments that focused on (1) microbial processing of fresh DOM and (2) photodegradation of deep-sea DOM to derive independent process-related molecular indices for biological formation and transformation (Ibio) and photodegradation (Iphoto). Both indices were applied to a global ocean data set of DOM composition. The distributions of Iphoto and Ibio were consistent with increased photodegradation and biological reworking of DOM in sunlit surface waters, and traces of these surface processes were evident at depth. Increased Ibio values in the deep Southern Ocean and South Atlantic implied export of microbially reworked DOM. Photodegraded DOM (increased Iphoto) in the deep subtropical gyres of Atlantic and Pacific oceans suggested advective transport in warm-core eddies. The simultaneous application of Iphoto and Ibio disentangled and assessed two processes that left unique molecular signatures in the global ocean

    Zooplankton-derived dissolved organic matter composition and its bioavailability of natural prokaryotic communities

    Get PDF
    Research articleZooplankton grazing onphytoplankton promotes the release of particulate and dissolved organic matter (DOM) into the water column and therefore plays a key role in organic matter cycling in aquatic systems. Prokaryotes are the main DOM consumers in the ocean by actively remineralizing and transforming it, contributing to its molecular diversification. To explore the molecular composition of zooplankton-derived DOM and its bioavailability to natural prokaryotic communities, the DOM generated by a mixed zooplankton community in the coastal Atlantic off Spain was used as substrate for a natural prokaryotic community and monitored over a ~ 5-d incubation experiment. The molecular composition of solid-phase extracted DOM was characterized via Fourier-transform ion cyclotron resonance mass spectrometry. After ~ 4 d in the zooplankton-derived DOM amended incubation, the prokaryotic community demonstrated a 17-fold exponential increase in cell number. The prokaryotic growth resulted in a reduction in bulk dissolved organic carbon concentration and the zooplankton-derived DOM was considerably transformed at molecular and bulk elemental levels over the incubation period. The C : N ratio (calculated from the obtained molecular formulae) increased while the functional diversity decreased over the incubation time. In addition, molecular indices pointed to a reduced bioavailability of DOM at the end of the experiment. These findings show that zooplankton excreta are a source of labile organic matter that is quickly metabolized by the prokaryotic community. Therefore, a fraction of carbon is shunted from transfer to secondary consumers similarly to the viral shunt, suggesting that the zooplankton–prokaryotic interactions play an important role in the ocean's carbon cycle.IEO, XUNTA DE GALICIA (INGO7A 2018/2), DFG (CO 2218/2-1 and TRR51

    Dissolved organic carbon in the deep Southern Ocean: Local versus distant controls

    No full text
    The global ocean contains a massive reservoir (662 ± 32 Pg C) of dissolved organic carbon (DOC), and its dynamics, particularly in the deepest zones, are only slowly being understood. DOC in the deep ocean is ubiquitously low in concentration (~35 to 48 µmol kg−1) and aged (4000 to 6000 years), persisting for multiple meridional overturning circulations. Deep waters relatively enriched in DOC form in the North Atlantic, migrate to the Southern Ocean to mix with waters from Antarctic shelves and the deep Pacific and Indian Oceans, in turn forming the voluminous waters of the Circumpolar Deep Water. Here we seek evidence for local (autochthonous) versus distant (allochthonous) processes in determining the distribution of DOC in the deep Southern Ocean. Prior analyses on DOC in the deep Southern Ocean have conflicted, describing both conservative and nonconservative traits: the deep DOC field has been reported as uniform in distribution, yet local inputs have been suggested as quantitatively important. We use multiple approaches (multiple linear regression, mass transport, and mass balance calculations) with data from Climate Variability and Predictability Repeat Hydrography sections to evaluate the system. We find that DOC concentrations in the deep Southern Ocean largely reflect the conservative mixing of the several deep waters entering the system from the north. Mass balance suggests that the relatively depleted DOC radiocarbon content in the deep Southern Ocean is a conserved property as well. These analyses advance our understanding of the controls on the DOC reservoir of the Southern Ocean. Key Points DOC concentrations in circumpolar waters reflect conserved mixing of source waters from the Atlantic, Pacific, and Indian Oceans Contributions from these three deep waters explain the radiocarbon age of DOC in the Southern Ocean Evidence for a quantitatively important, local source of recalcitrant DOC into the deep Southern Ocean is absen

    The detection of bacterial exometabolites in marine dissolved organic matter through ultrahigh‐resolution mass spectrometry

    No full text
    Bacteria play a key role in sustaining the chemodiversity of marine dissolved organic matter (DOM), yet there is limited direct evidence of a major contribution of bacterial exometabolites to the DOM pool. This study tests whether molecular formulae of intact exometabolites can be detected in natural DOM via untargeted Fourier‐transform ion cyclotron resonance mass spectrometry (FT‐ICR‐MS). We analyzed a series of quantitative mixtures of solid‐phase extracted DOM from the deep ocean, of a natural microbial community and selected model strains of marine bacteria. Under standard instrument settings (200 broadband scans, mass range 92–1000 Da), 77% of molecular formulae were shared between the mesocosm and marine DOM. However, there was < 10% overlap between pure bacterial exometabolome with marine DOM, and in mixing ratios closest to mimicking natural environments (1% bacterial DOM, 99% marine DOM), only 4% of the unique bacterial exometabolites remained detectable. Further experiments with the bacterial exometabolome DOM mixtures using enhanced instrument settings resulted in increased detection of the exometabolites at low concentrations. At 1000 and 10,000 accumulated scans, 23% and 29% of the unique molecular formulae were detectable at low concentrations, respectively. Moreover, windowing a specific mass range encompassing a representative fraction of exometabolites tripled the number of unique detected formulae at low concentrations. Routine FT‐ICR‐MS settings are thus not always sufficient to distinguish bacterial exometabolome patterns from a seawater DOM background. To observe these patterns at higher sensitivity, we recommend a high scan number coupled with windowing a characteristic region of the molecular fingerprint.Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/50110000165

    Limited utilization of extracted dissolved organic matter by prokaryotic communities from the subtropical North Atlantic

    No full text
    The ocean contains a large reservoir of dissolved organic matter (DOM) that persists for millennia. Both the very dilute concentrations of individual DOM molecules and intrinsic recalcitrance to microbial decay imparted by molecular structure are suggested mechanisms for this long residence time. Here, we report an experiment comparing the responses of surface and deep prokaryotes to DOM isolated and enriched by solid‐phase extraction from surface and deep waters of the subtropical North Atlantic Ocean. Extracts from both depths were qualitatively characterized as biologically recalcitrant given their similarly high C : N ratios of 26. Surface prokaryotes measurably drew down extracted dissolved organic carbon (DOC) concentrations, but the drawdown was only 4% of the initial enriched DOC concentration regardless of enrichment level or depth. Deep microbes, in contrast, did not cause observable changes in DOC concentrations. Surface and deep prokaryotes had similar temperature‐normalized growth responses to extracts from each depth. Biological indicators (e.g., kinetics) suggest that prokaryotes were less efficient at catalyzing surface than deep DOM (catalytic efficiencies of 0.003–0.005 vs. 0.02–0.03 h−1, respectively). These values indicate qualitative differences in extracted DOM from the two depths, perhaps suggesting a variable nature of the refractory DOC depending on depth. Moreover, only a small portion of the extracted DOM was biologically utilizable, regardless of concentration factor or depth, and essentially only a small fraction of it was incorporated into biomass. Microbial selection against substrates that meet modest energy but no growth demands may be a factor contributing to the long‐term stability of marine DOM

    Net community production and carbon export during the late summer in the Ross Sea, Antarctica

    No full text
    The phytoplankton bloom in the Ross Sea is the largest in spatial extent and one of the most productive in Antarctica, yet the fate of the summer bloom remains poorly understood. Here we present carbon system data from the first biogeochemical process cruise to be conducted in both the western and central Ross Sea during late summer (February–March 2013). Using one‐dimensional carbon budgets, we found evidence for substantial positive net community production (425 ± 204 mmol C m−2 d−1) during the late summer in Terra Nova Bay (TNB) of the western Ross Sea, which was rapidly exported to below 200 m. In addition, seasonally integrated carbon export was higher in diatom‐dominated TNB (7.3 ± 0.9 mol C m−2) compared to the Phaeocystis antarctica‐dominated central Ross Sea (3.4 ± 0.8 mol C m−2). Substantial late summer productivity and export may be a widespread phenomenon in Antarctic coastal regions that is not accounted for in regional carbon models. Key Points Substantial positive net community production during the late summer in the western Ross Sea Higher seasonal carbon export in the diatom‐dominated western Ross Sea than in the Phaeocystis antarctica‐dominated central Ross Se
    corecore