9 research outputs found

    Genes involved in immune reinduction may constitute biomarkers of response for metastatic melanoma patients treated with targeted therapy

    Get PDF
    Targeted therapy in metastatic melanoma often achieves a major tumour regression response and significant long-term survival via the release of antigens that reinduce immunocompetence. The biomarkers thus activated may guide the prediction of response, but this association and its mechanism have yet to be established. Blood samples were collected from nineteen consecutive patients with metastatic melanoma before, during, and after treatment with targeted therapy. Differential gene expression analysis was performed, which identified the genes involved in the treatment, both in the first evaluation of response and during progression. Although clinical characteristics of the patients were poorer than those obtained in pivotal studies, radiological responses were similar to those reported previously (objective response rate: 73.7%). In the first tumour assessment, the expression of some genes increased (CXCL-10, SERPING1, PDL1, and PDL2), while that of others decreased (ARG1, IL18R1, IL18RAP, IL1R1, ILR2, FLT3, SLC11A1, CD163, and S100A12). The analysis of gene expression in blood shows that some are activated and others inhibited by targeted therapy. This response pattern may provide biomarkers of the immune reinduction response, which could be used to study potential combination treatments. Nevertheless, further studies are needed to validate these results.Fundación Progreso y Salud, Junta de Andalucí

    Intermittent BRAF inhibition in advanced BRAF mutated melanoma results of a phase II randomized trial

    Get PDF
    Combination treatment with BRAF (BRAFi) plus MEK inhibitors (MEKi) has demonstrated survival benefit in patients with advanced melanoma harboring activating BRAF mutations. Previous preclinical studies suggested that an intermittent dosing of these drugs could delay the emergence of resistance. Contrary to expectations, the first published phase 2 randomized study comparing continuous versus intermittent schedule of dabrafenib (BRAFi) plus trametinib (MEKi) demonstrated a detrimental effect of the “on−off” schedule. Here we report confirmatory data from the Phase II randomized open-label clinical trial comparing the antitumoral activity of the standard schedule versus an intermittent combination of vemurafenib (BRAFi) plus cobimetinib (MEKi) in advanced BRAF mutant melanoma patients (NCT02583516). The trial did not meet its primary endpoint of progression free survival (PFS) improvement. Our results show that the antitumor activity of the experimental intermittent schedule of vemurafenib plus cobimetinib is not superior to the standard continuous schedule. Detection of BRAF mutation in cell free tumor DNA has prognostic value for survival and its dynamics has an excellent correlation with clinical response, but not with progression. NGS analysis demonstrated de novo mutations in resistant cases

    High IGKC-Expressing Intratumoral Plasma Cells Predict Response to Immune Checkpoint Blockade.

    Get PDF
    Este artículo ha sido publicado en la revista International Journal of Molecular Sciences. Esta versión tiene Licencia Creative Commons CC-BYResistance to Immune Checkpoint Blockade (ICB) constitutes the current limiting factor for the optimal implementation of this novel therapy, which otherwise demonstrates durable responses with acceptable toxicity scores. This limitation is exacerbated by a lack of robust biomarkers. In this study, we have dissected the basal TME composition at the gene expression and cellular levels that predict response to Nivolumab and prognosis. BCR, TCR and HLA profiling were employed for further characterization of the molecular variables associated with response. The findings were validated using a single-cell RNA-seq data of metastatic melanoma patients treated with ICB, and by multispectral immunofluorescence. Finally, machine learning was employed to construct a prediction algorithm that was validated across eight metastatic melanoma cohorts treated with ICB. Using this strategy, we have unmasked a major role played by basal intratumoral Plasma cells expressing high levels of IGKC in efficacy. IGKC, differentially expressed in good responders, was also identified within the Top response-related BCR clonotypes, together with IGK variants. These results were validated at gene, cellular and protein levels; CD138+ Plasma-like and Plasma cells were more abundant in good responders and correlated with the same RNA-seq-defined fraction. Finally, we generated a 15-gene prediction model that outperformed the current reference score in eight ICB-treated metastatic melanoma cohorts. The evidenced major contribution of basal intratumoral IGKC and Plasma cells in good response and outcome in ICB in metastatic melanoma is a groundbreaking finding in the field beyond the role of T lymphocytes

    Use of multikinase inhibitors/lenvatinib concomitant with locoregional therapies for the treatment of radioiodine-refractory differentiated thyroid cancer.

    No full text
    Locoregional recurrence of differentiated thyroid cancer (DTC) occurs in 20% of thyroid cancer patients. Currently, there are many strategies for management of locoregional recurrence of DTC that lead to local control of the disease. The introduction of lenvatinib into the therapeutic armamentarium provides a new option for the treatment of radioiodine-refractory DTC (RR-DTC). However, results for simultaneous treatment with lenvatinib and locoregional therapies are unknown in patients with RR-DTC. This paper reviews the current status of this approach and gives recommendations on the management of lenvatinib during concomitant locoregional procedures

    Genetic and Epigenetic Biomarkers of Immune Checkpoint Blockade Response

    No full text
    Checkpoint inhibitor therapy constitutes a promising cancer treatment strategy that targets the immune checkpoints to re-activate silenced T cell cytotoxicity. In recent pivotal trials, immune checkpoint blockade (ICB) demonstrated durable responses and acceptable toxicity, resulting in the regulatory approval of 8 checkpoint inhibitors to date for 15 cancer indications. However, up to ~85% of patients present with innate or acquired resistance to ICB, limiting its clinical utility. Current response biomarker candidates, including DNA mutation and neoantigen load, immune profiles, as well as programmed death-ligand 1 (PD-L1) expression, are only weak predictors of ICB response. Thus, identification of novel, more predictive biomarkers that could identify patients who would benefit from ICB constitutes one of the most important areas of immunotherapy research. Aberrant DNA methylation (5mC) and hydroxymethylation (5hmC) were discovered in multiple cancers, and dynamic changes of the epigenomic landscape have been identified during T cell differentiation and activation. While their role in cancer immunosuppression remains to be elucidated, recent evidence suggests that 5mC and 5hmC may serve as prognostic and predictive biomarkers of ICB-sensitive cancers. In this review, we describe the role of epigenetic phenomena in tumor immunoediting and other immune evasion related processes, provide a comprehensive update of the current status of ICB-response biomarkers, and highlight promising epigenomic biomarker candidates.The authors of this article are financed by the Svenska Läkaresällskapet Grants SLS-693561 and SLS-694791 (to I.B.), the European Commission MSCA Grant 799818 (to I.B.), the Grant for Research Support of Clinical Units of the Andalusian Health System SA0263/2017 (to I.B.), the Instituto de Salud Carlos III Grant PI18/01592 (to I.B., M.C., M.-Á.B.-G.), Fundación Bancaria Unicaja (to I.B., M.C., E.A.), the China Scholarship Council (CSC) 201600160066 Grant (to Q.X.), and the Karolinska Institutet Fonder Grants (to Q.X.).Ye

    VIGLA-M: visual gene expression data analytics

    No full text
    Abstract Background The analysis of gene expression levels is used in many clinical studies to know how patients evolve or to find new genetic biomarkers that could help in clinical decision making. However, the techniques and software available for these analyses are not intended for physicians, but for geneticists. However, enabling physicians to make initial discoveries on these data would benefit in the clinical assay development. Results Melanoma is a highly immunogenic tumor. Therefore, in recent years physicians have incorporated immune system altering drugs into their therapeutic arsenal against this disease, revolutionizing the treatment of patients with an advanced stage of the cancer. This has led us to explore and deepen our knowledge of the immunology surrounding melanoma, in order to optimize the approach. Within this project we have developed a database for collecting relevant clinical information for melanoma patients, including the storage of patient gene expression levels obtained from the NanoString platform (several samples are taken from each patient). The Immune Profiling Panel is used in this case. This database is being exploited through the analysis of the different expression profiles of the patients. This analysis is being done with Python, and a parallel version of the algorithms is available with Apache Spark to provide scalability as needed. Conclusions VIGLA-M, the visual analysis tool for gene expression levels in melanoma patients is available at http://khaos.uma.es/melanoma/. The platform with real clinical data can be accessed with a demo user account, physician, using password physician_test_7634 (if you encounter any problems, contact us at this email address: mailto: [email protected]). The initial results of the analysis of gene expression levels using these tools are providing first insights into the patients’ evolution. These results are promising, but larger scale tests must be developed once new patients have been sequenced, to discover new genetic biomarkers

    Association of Circular RNA and Long Non-Coding RNA Dysregulation with the Clinical Response to Immune Checkpoint Blockade in Cutaneous Metastatic Melanoma

    Get PDF
    Cutaneous melanoma (CM) is the most lethal form of skin cancer if it becomes metastatic, where treatment options and survival chances decrease dramatically. Immunotherapy treatments based on the immunologic checkpoint inhibitors programmed death cell protein 1 (PD-1) and cytotoxic T-lymphocyte antigen 4 (CTLA-4) constituted a main breakthrough in the treatment of metastatic CM, particularly for the achievement of long-term benefits. Even though it is a very promising therapy, resistance to primary immune checkpoint blockade (ICB) arises in about 70% of CM patients treated with a CTLA-4 inhibitor, and 40–65% of CM patients administered with a PD-1-targeting treatment. Some long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs) are implicated in triggering pro- and anti-tumorigenic responses to various cancer treatments. The relationship between lncRNAs, circRNAs and ICB immunotherapy has not been explored in cutaneous metastatic melanoma (CMM). The aim of this pilot study is to evaluate the potential role of circRNA and lncRNA expression variability as pre-treatment predictor of the clinical response to immunotherapy in CMM patients. RNA-seq from 12 formalin-fixed paraffin-embedded (FFPE) samples from the metastatic biopsies of CMM patients treated with nivolumab was used to identify response-associated transcripts. Our findings indicate that specific lncRNAs and circRNAs, probably acting as competitive endogenous RNAs (ceRNAs), are involved in the regulatory networks of the immune response against metastatic melanoma that these patients have under treatment with nivolumab. Moreover, we established a risk score that yields predictions of the overall survival (OS) and progression-free survival (PFS) of CMM patients with high accuracy. This proof-of-principle work provides a possible insight into the function of ceRNAs, contributing to efforts to decipher the complex molecular mechanisms of ICB cancer treatment response

    High IGKC-Expressing Intratumoral Plasma Cells Predict Response to Immune Checkpoint Blockade

    No full text
    Resistance to Immune Checkpoint Blockade (ICB) constitutes the current limiting factor for the optimal implementation of this novel therapy, which otherwise demonstrates durable responses with acceptable toxicity scores. This limitation is exacerbated by a lack of robust biomarkers. In this study, we have dissected the basal TME composition at the gene expression and cellular levels that predict response to Nivolumab and prognosis. BCR, TCR and HLA profiling were employed for further characterization of the molecular variables associated with response. The findings were validated using a single-cell RNA-seq data of metastatic melanoma patients treated with ICB, and by multispectral immunofluorescence. Finally, machine learning was employed to construct a prediction algorithm that was validated across eight metastatic melanoma cohorts treated with ICB. Using this strategy, we have unmasked a major role played by basal intratumoral Plasma cells expressing high levels of IGKC in efficacy. IGKC, differentially expressed in good responders, was also identified within the Top response-related BCR clonotypes, together with IGK variants. These results were validated at gene, cellular and protein levels; CD138+ Plasma-like and Plasma cells were more abundant in good responders and correlated with the same RNA-seq-defined fraction. Finally, we generated a 15-gene prediction model that outperformed the current reference score in eight ICB-treated metastatic melanoma cohorts. The evidenced major contribution of basal intratumoral IGKC and Plasma cells in good response and outcome in ICB in metastatic melanoma is a groundbreaking finding in the field beyond the role of T lymphocytes
    corecore