122 research outputs found

    Sb-surfactant mediated growth of Ge nanostructures

    Get PDF
    International audienceThis paper reports the AFM and HREM study of the Sb surfactant mediated growth of Ge on Si(0 0 1). We show that very dense self-organised Ge dots of small lateral dimensions can be grown by using a sub-monolayer coverage of Sb on Si(0 0 1) in the transient growth regime between 2D nucleation and step flow. The dramatic Ge growth change induced by Sb is attributed to both kinetic and thermodynamic effects. Indeed, HREM observations evidence mainly two phenomena: the close-packing of ultra-small Ge islands indicating a lower surface diffusion in presence of Sb and a mono-modal island shape and size that strongly differs from the bimodal islands 'huts' and 'domes' commonly observed without Sb. Morphological and microstructural features of Ge islands formed with and without Sb are studied and the differences between facets and aspect ratio are exhibited. Moreover, at lower growth temperature (in the 2D nucleation regime, T g 0 350°C), a delay to 3D island nucleation is observed and defect free 2D flat layers can be grown up to thicknesses of 18 A ,. At higher growth temperature, (in pure step flow at T g 750°C) large, well separated 'dome' islands partially relaxed by dislocation nucleation on their edges are obtained. Such islands are very similar to those obtained without Sb coverage. The complete desorption of Sb on Ge rich surface at T\ 720°C explains this result. This study which improves the understanding on the formation of ultra-small dense islands is very promising for the fabrication of quantum devices that require highly homogeneous islands of small lateral sizes and of MOSFET heterostructures with strained SiGe n-channel which require flat Ge rich layers with abrupt interfaces

    SiGe nanostructures: new insights into growth processes

    Get PDF
    International audienceDuring the last decade, Si/Si 1−x Ge x heterostructures have emerged as a viable system for use in CMOS technology with the recent industrial production of heterojunction bipolar transistor-based integrated circuits. However, many key problems have to be solved to further expand the capabilities of this system to other more attractive devices. This paper gives a comprehensive review of the progress achieved during the last few years in the understanding of some fundamental growth mechanisms. The discrepancies between classical theories (in the framework of continuum elasticity) and experimental results are also specially addressed. In particular, the major role played by kinetics in the morphological evolution of layers is particularly emphasized. Starting from the unexpected differences in Si 1−x Ge x morphological evolution when deposited on (001) and on (111), our review then focuses on: (1) the strain control and adjustment (from fully strained to fully relaxed 2D and 3D nanostructures)-in particular, some original examples of local CBED stress measurements are presented; (2) the nucleation, growth, and self-assembly processes, using self-patterned template layers and surfactant-mediated growth; (3) the doping processes (using B for type p and Sb for type n) and the limitations induced by dopant redistribution during and after growth due to diffusion, segregation, and desorption. The final section will briefly address some relevant optical properties of Si 1−x Ge x strained layers using special growth processes

    Orientation dependence of the elastic instability on strained SiGe films

    Full text link
    At low strain, SiGe films on Si substrates undergo a continuous nucleationless morphological evolution known as the Asaro-Tiller-Grinfeld instability. We demonstrate experimentally that this instability develops on Si(001) but not on Si(111) even after long annealing. Using a continuum description of this instability, we determine the origin of this difference. When modeling surface diffusion in presence of wetting, elasticity and surface energy anisotropy, we find a retardation of the instability on Si(111) due to a strong dependence of the instability onset as function of the surface stiffness. This retardation is at the origin of the inhibition of the instability on experimental time scales even after long annealing.Comment: 3 pages, 4 figure

    Role of Quantum Confinement in Luminescence Efficiency of Group IV Nanostructures

    Full text link
    Experimental results obtained previously for the photoluminescence efficiency (PLeff_{eff}) of Ge quantum dots (QDs) are theoretically studied. A log\log-log\log plot of PLeff_{eff} versus QD diameter (DD) resulted in an identical slope for each Ge QD sample only when EG(D2+D)1E_{G}\sim (D^2+D)^{-1}. We identified that above DD\approx 6.2 nm: EGD1E_{G}\sim D^{-1} due to a changing effective mass (EM), while below DD\approx 4.6 nm: EGD2E_{G}\sim D^{-2} due to electron/ hole confinement. We propose that as the QD size is initially reduced, the EM is reduced, which increases the Bohr radius and interface scattering until eventually pure quantum confinement effects dominate at small DD

    Lattice diffusion and surface segregation of B during growth of SiGe heterostructures by molecular beam epitaxy: effect of Ge concentration and biaxial stress

    Full text link
    Si1-xGex/Si1-yGey/Si(100) heterostructures grown by Molecular Beam Epitaxy (MBE) were used in order to study B surface segregation during growth and B lattice diffusion. Ge concentration and stress effects were separated. Analysis of B segregation during growth shows that: i) for layers in epitaxy on (100)Si), B segregation decreases with increasing Ge concentration, i.e. with increased compressive stress, ii) for unstressed layers, B segregation increases with Ge concentration, iii) at constant Ge concentration, B segregation increases for layers in tension and decreases for layers in compression. The contrasting behaviors observed as a function of Ge concentration in compressively stressed and unstressed layers can be explained by an increase of the equilibrium segregation driving force induced by Ge additions and an increase of near-surface diffusion in compressively stressed layers. Analysis of lattice diffusion shows that: i) in unstressed layers, B lattice diffusion coefficient decreases with increasing Ge concentration, ii) at constant Ge concentration, the diffusion coefficient of B decreases with compressive biaxial stress and increases with tensile biaxial stress, iii) the volume of activation of B diffusion () is positive for biaxial stress while it is negative in the case of hydrostatic pressure. This confirms that under a biaxial stress the activation volume is reduced to the relaxation volume

    Prepyramid-to-pyramid transition of SiGe islands on Si(001)

    Full text link
    The morphology of the first three-dimensional islands appearing during strained growth of SiGe alloys on Si(001) was investigated by scanning tunneling microscopy. High resolution images of individual islands and a statistical analysis of island shapes were used to reconstruct the evolution of the island shape as a function of size. As they grow, islands undergo a transition from completely unfacetted rough mounds (prepyramids) to partially {105} facetted islands and then they gradually evolve to {105} facetted pyramids. The results are in good agreement with the predictions of a recently proposed theoretical model

    In situ Control of Si/Ge Growth on Stripe-Patterned Substrates Using Reflection High-Energy Electron Diffraction and Scanning Tunneling Microscopy

    Get PDF
    Si and Ge growth on the stripe-patterned Si (001) substrates is studied using in situ reflection high-energy electron diffraction (RHEED) and scanning tunneling microscopy (STM). During Si buffer growth, the evolution of RHEED patterns reveals a rapid change of the stripe morphology from a multifaceted “U” to a single-faceted “V” geometry with {119} sidewall facets. This allows to control the pattern morphology and to stop Si buffer growth once a well-defined stripe geometry is formed. Subsequent Ge growth on “V”-shaped stripes was performed at two different temperatures of 520 and 600°C. At low temperature of 520°C, pronounced sidewall ripples are formed at a critical coverage of 4.1 monolayers as revealed by the appearance of splitted diffraction streaks in RHEED. At 600°C, the ripple onset is shifted toward higher coverages, and at 5.2 monolayers dome islands are formed at the bottom of the stripes. These observations are in excellent agreement with STM images recorded at different Ge coverages. Therefore, RHEED is an efficient tool for in situ control of the growth process on stripe-patterned substrate templates. The comparison of the results obtained at different temperature reveals the importance of kinetics on the island formation process on patterned substrates

    Morphology Analysis of Si Island Arrays on Si(001)

    Get PDF
    The formation of nanometer-scale islands is an important issue for bottom-up-based schemes in novel electronic, optoelectronic and magnetoelectronic devices technology. In this work, we present a detailed atomic force microscopy analysis of Si island arrays grown by molecular beam epitaxy. Recent reports have shown that self-assembled distributions of fourfold pyramid-like islands develop in 5-nm thick Si layers grown at substrate temperatures of 650 and 750°C on HF-prepared Si(001) substrates. Looking for wielding control and understanding the phenomena involved in this surface nanostructuring, we develop and apply a formalism that allows for processing large area AFM topographic images in a shot, obtaining surface orientation maps with specific information on facets population. The procedure reveals some noticeable features of these Si island arrays, e.g. a clear anisotropy of the in-plane local slope distributions. Total island volume analysis also indicates mass transport from the substrate surface to the 3D islands, a process presumably related to the presence of trenches around some of the pyramids. Results are discussed within the framework of similar island arrays in homoepitaxial and heteroepitaxial semiconductor systems

    Growth and characterization of gold catalyzed SiGe nanowires and alternative metal-catalyzed Si nanowires

    Get PDF
    The growth of semiconductor (SC) nanowires (NW) by CVD using Au-catalyzed VLS process has been widely studied over the past few years. Among others SC, it is possible to grow pure Si or SiGe NW thanks to these techniques. Nevertheless, Au could deteriorate the electric properties of SC and the use of other metal catalysts will be mandatory if NW are to be designed for innovating electronic. First, this article's focus will be on SiGe NW's growth using Au catalyst. The authors managed to grow SiGe NW between 350 and 400°C. Ge concentration (x) in Si1-xGex NW has been successfully varied by modifying the gas flow ratio: R = GeH4/(SiH4 + GeH4). Characterization (by Raman spectroscopy and XRD) revealed concentrations varying from 0.2 to 0.46 on NW grown at 375°C, with R varying from 0.05 to 0.15. Second, the results of Si NW growths by CVD using alternatives catalysts such as platinum-, palladium- and nickel-silicides are presented. This study, carried out on a LPCVD furnace, aimed at defining Si NW growth conditions when using such catalysts. Since the growth temperatures investigated are lower than the eutectic temperatures of these Si-metal alloys, VSS growth is expected and observed. Different temperatures and HCl flow rates have been tested with the aim of minimizing 2D growth which induces an important tapering of the NW. Finally, mechanical characterization of single NW has been carried out using an AFM method developed at the LTM. It consists in measuring the deflection of an AFM tip while performing approach-retract curves at various positions along the length of a cantilevered NW. This approach allows the measurement of as-grown single NW's Young modulus and spring constant, and alleviates uncertainties inherent in single point measurement
    corecore