42 research outputs found

    Tau accumulation in autosomal dominant Alzheimer’s disease: a longitudinal [18F]flortaucipir study

    Get PDF
    Cortical tau accumulation is a key pathological event that partly defines Alzheimer’s disease (AD) onset and is associated with cognitive decline and future disease progression. However, an improved understanding of the timing and pattern of early tau deposition in AD and how this may be tracked in vivo is needed. Data from 59 participants involved in two longitudinal cohort studies of autosomal dominant AD (ADAD) were used to investigate whether tau PET can detect and track presymptomatic change; seven participants were symptomatic, and 52 were asymptomatic but at a 50% risk of carrying a pathogenic mutation. All had baseline flortaucipir (FTP) PET, MRI and clinical assessments; 26 individuals had more than one FTP PET scan. Standardised uptake value ratios (SUVRs) in prespecified regions of interest (ROIs) were obtained using inferior cerebellar grey matter as the reference region. We compared the changes in FTP SUVRs between presymptomatic carriers, symptomatic carriers and non-carriers, adjusting for age, sex and study site. We also investigated the relationship between regional FTP SUVRs and estimated years to/from symptom onset (EYO). Compared to both non-carriers and presymptomatic carriers, FTP SUVRs were significantly higher in symptomatic carriers in all ROIs tested (p 0.05), although increased FTP signal uptake was seen posteriorly in some individuals around the time of expected symptom onset. When we examined the relationship of FTP SUVR with respect to EYO, the earliest significant regional difference between mutation carriers and non-carriers was detected within the precuneus prior to estimated symptom onset in some cases. This study supports preliminary studies suggesting that presymptomatic tau tracer uptake is rare in ADAD. In cases where early uptake was seen, there was often a predilection for posterior regions (the precuneus and post-cingulate) as opposed to the medial temporal lobe, highlighting the importance of examining in vivo tau uptake beyond the confines of traditional Braak staging

    Evaluation of dose-dependent treatment effects after mid-trial dose escalation in biomarker, clinical, and cognitive outcomes for gantenerumab or solanezumab in dominantly inherited Alzheimer's disease

    Get PDF
    Introduction: While the Dominantly Inherited Alzheimer Network Trials Unit (DIAN-TU) was ongoing, external data suggested higher doses were needed to achieve targeted effects; therefore, doses of gantenerumab were increased 5-fold, and solanezumab was increased 4-fold. We evaluated to what extent mid-trial dose increases produced a dose-dependent treatment effect. Methods: Using generalized linear mixed effects (LME) models, we estimated the annual low- and high-dose treatment effects in clinical, cognitive, and biomarker outcomes. Results: Both gantenerumab and solanezumab demonstrated dose-dependent treatment effects (significant for gantenerumab, non-significant for solanezumab) in their respective target amyloid biomarkers (Pittsburgh compound B positron emission tomography standardized uptake value ratio and cerebrospinal fluid amyloid beta 42), with gantenerumab demonstrating additional treatment effects in some downstream biomarkers. No dose-dependent treatment effects were observed in clinical or cognitive outcomes. Conclusions: Mid-trial dose escalation can be implemented as a remedy for an insufficient initial dose and can be more cost effective and less burdensome to participants than starting a new trial with higher doses, especially in rare diseases. Highlights: We evaluated the dose-dependent treatment effect of two different amyloid-specific immunotherapies. Dose-dependent treatment effects were observed in some biomarkers. No dose-dependent treatment effects were observed in clinical/cognitive outcomes, potentially due to the fact that the modified study may not have been powered to detect such treatment effects in symptomatic subjects at a mild stage of disease exposed to high (or maximal) doses of medication for prolonged durations

    Comparing amyloid-β plaque burden with antemortem PiB PET in autosomal dominant and late-onset Alzheimer disease

    Get PDF
    Pittsburgh compound B (PiB) radiotracer for positron emission tomography (PET) imaging can bind to different types of amyloid-β plaques and blood vessels (cerebral amyloid angiopathy). However, the relative contributions of different plaque subtypes (diffuse versus cored/compact) to in vivo PiB PET signal on a region-by-region basis is incompletely understood. Of particular interest is whether the same staging schemes for summarizing amyloid-β burden are appropriate for both late-onset and autosomal dominant forms of Alzheimer disease (LOAD and ADAD). Here we compared antemortem PiB PET with follow-up postmortem estimation of amyloid-β burden using stereologic methods to estimate the relative area fraction of diffuse and cored/compact amyloid-β plaques across 16 brain regions in 15 individuals with ADAD and 14 individuals with LOAD. In ADAD, we found that PiB PET correlated with diffuse plaques in the frontal, parietal, temporal, and striatal regions commonly used to summarize amyloid-β burden in PiB PET, and correlated with both diffuse and cored/compact plaques in the occipital lobe and parahippocampal gyrus. In LOAD, we found that PiB PET correlated with both diffuse and cored/compact plaques in the anterior cingulate, frontal lobe (middle frontal gyrus), and parietal lobe, and showed additional correlations with diffuse plaque in the amygdala and occipital lobe, and with cored/compact plaque in the temporal lobe. Thus, commonly used PiB PET summary regions predominantly reflect diffuse plaque burden in ADAD and a mixture of diffuse and cored/compact plaque burden in LOAD. In direct comparisons of ADAD and LOAD, postmortem stereology identified much greater mean amyloid-β plaque burdens in ADAD versus LOAD across almost all brain regions studied. However, standard PiB PET did not recapitulate these stereologic findings, likely due to non-trivial amyloid-β plaque burdens in ADAD within the cerebellum and brainstem – commonly used reference regions in PiB PET. Our findings suggest that PiB PET summary regions correlate with amyloid-β plaque burden in both ADAD and LOAD; however, they might not be reliable in direct comparisons of regional amyloid-β plaque burden between the two forms of AD

    Awareness of genetic risk in the Dominantly Inherited Alzheimer Network (DIAN)

    Get PDF
    Introduction: Although some members of families with autosomal dominant Alzheimer's disease mutations learn their mutation status, most do not. How knowledge of mutation status affects clinical disease progression is unknown. This study quantifies the influence of mutation awareness on clinical symptoms, cognition, and biomarkers. / Methods: Mutation carriers and non‐carriers from the Dominantly Inherited Alzheimer Network (DIAN) were stratified based on knowledge of mutation status. Rates of change on standard clinical, cognitive, and neuroimaging outcomes were examined. / Results: Mutation knowledge had no associations with cognitive decline, clinical progression, amyloid deposition, hippocampal volume, or depression in either carriers or non‐carriers. Carriers who learned their status mid‐study had slightly higher levels of depression and lower cognitive scores. / Discussion: Knowledge of mutation status does not affect rates of change on any measured outcome. Learning of status mid‐study may confer short‐term changes in cognitive functioning, or changes in cognition may influence the determination of mutation status

    T1 and FLAIR signal intensities are related to tau pathology in dominantly inherited Alzheimer disease

    Get PDF
    Carriers of mutations responsible for dominantly inherited Alzheimer disease provide a unique opportunity to study potential imaging biomarkers. Biomarkers based on routinely acquired clinical MR images, could supplement the extant invasive or logistically challenging) biomarker studies. We used 1104 longitudinal MR, 324 amyloid beta, and 87 tau positron emission tomography imaging sessions from 525 participants enrolled in the Dominantly Inherited Alzheimer Network Observational Study to extract novel imaging metrics representing the mean (μ) and standard deviation (σ) of standardized image intensities of T1-weighted and Fluid attenuated inversion recovery (FLAIR) MR scans. There was an exponential decrease in FLAIR-μ in mutation carriers and an increase in FLAIR and T1 signal heterogeneity (T1-σ and FLAIR-σ) as participants approached the symptom onset in both supramarginal, the right postcentral and right superior temporal gyri as well as both caudate nuclei, putamina, thalami, and amygdalae. After controlling for the effect of regional atrophy, FLAIR-μ decreased and T1-σ and FLAIR-σ increased with increasing amyloid beta and tau deposition in numerous cortical regions. In symptomatic mutation carriers and independent of the effect of regional atrophy, tau pathology demonstrated a stronger relationship with image intensity metrics, compared with amyloid pathology. We propose novel MR imaging intensity-based metrics using standard clinical T1 and FLAIR images which strongly associates with the progression of pathology in dominantly inherited Alzheimer disease. We suggest that tau pathology may be a key driver of the observed changes in this cohort of patients

    Variant-dependent heterogeneity in amyloid β burden in autosomal dominant Alzheimer's disease: cross-sectional and longitudinal analyses of an observational study

    Get PDF
    Background: Insights gained from studying individuals with autosomal dominant Alzheimer's disease have broadly influenced mechanistic hypotheses, biomarker development, and clinical trials in both sporadic and dominantly inherited Alzheimer's disease. Although pathogenic variants causing autosomal dominant Alzheimer's disease are highly penetrant, there is substantial heterogeneity in levels of amyloid β (Aβ) between individuals. We aimed to examine whether this heterogeneity is related to disease progression and to investigate the association with mutation location within PSEN1, PSEN2, or APP. Methods: We did cross-sectional and longitudinal analyses of data from the Dominantly Inherited Alzheimer's Network (DIAN) observational study, which enrols individuals from families affected by autosomal dominant Alzheimer's disease. 340 participants in the DIAN study who were aged 18 years or older, had a history of autosomal dominant Alzheimer's disease in their family, and who were enrolled between September, 2008, and June, 2019, were included in our analysis. 206 participants were carriers of pathogenic mutations in PSEN1, PSEN2, or APP, and 134 were non-carriers. 62 unique pathogenic variants were identified in the cohort and were grouped in two ways. First, we sorted variants in PSEN1, PSEN2, or APP by the affected protein domain. Second, we divided PSEN1 variants according to position before or after codon 200. We examined variant-dependent variability in Aβ biomarkers, specifically Pittsburgh-Compound-B PET (PiB-PET) signal, levels of CSF Aβ1-42 (Aβ42), and levels of Aβ1-40 (Aβ40). Findings: Cortical and striatal PiB-PET signal showed striking variant-dependent variability using both grouping approaches (p0·7), and CSF Aβ42 levels (codon-based grouping: p=0·49; domain-based grouping: p=0·095). Longitudinal PiB-PET signal also varied across codon-based groups, mirroring cross-sectional analyses. Interpretation: Autosomal dominant Alzheimer's disease pathogenic variants showed highly differential temporal and regional patterns of PiB-PET signal, despite similar functional progression. These findings suggest that although increased PiB-PET signal is generally seen in autosomal dominant Alzheimer's disease, higher levels of PiB-PET signal at an individual level might not reflect more severe or more advanced disease. Our results have high relevance for ongoing clinical trials in autosomal dominant Alzheimer's disease, including those using Aβ PET as a surrogate marker of disease progression. Additionally, and pertinent to both sporadic and autosomal dominant Alzheimer's disease, our results suggest that CSF and PET measures of Aβ levels are not interchangeable and might reflect different Aβ-driven pathobiological processes. Funding: National Institute on Aging, Doris Duke Charitable Foundation, German Center for Neurodegenerative Diseases, Japanese Agency for Medical Research and Development

    Cerebrospinal fluid proteomics define the natural history of autosomal dominant Alzheimer's disease

    Get PDF
    Alzheimer’s disease (AD) pathology develops many years before the onset of cognitive symptoms. Two pathological processes—aggregation of the amyloid-β (Aβ) peptide into plaques and the microtubule protein tau into neurofibrillary tangles (NFTs)—are hallmarks of the disease. However, other pathological brain processes are thought to be key disease mediators of Aβ plaque and NFT pathology. How these additional pathologies evolve over the course of the disease is currently unknown. Here we show that proteomic measurements in autosomal dominant AD cerebrospinal fluid (CSF) linked to brain protein coexpression can be used to characterize the evolution of AD pathology over a timescale spanning six decades. SMOC1 and SPON1 proteins associated with Aβ plaques were elevated in AD CSF nearly 30 years before the onset of symptoms, followed by changes in synaptic proteins, metabolic proteins, axonal proteins, inflammatory proteins and finally decreases in neurosecretory proteins. The proteome discriminated mutation carriers from noncarriers before symptom onset as well or better than Aβ and tau measures. Our results highlight the multifaceted landscape of AD pathophysiology and its temporal evolution. Such knowledge will be critical for developing precision therapeutic interventions and biomarkers for AD beyond those associated with Aβ and tau

    Segregation of functional networks is associated with cognitive resilience in Alzheimer's disease

    Get PDF
    Cognitive resilience is an important modulating factor of cognitive decline in Alzheimer's disease, but the functional brain mechanisms that support cognitive resilience remain elusive. Given previous findings in normal aging, we tested the hypothesis that higher segregation of the brain's connectome into distinct functional networks represents a functional mechanism underlying cognitive resilience in Alzheimer's disease. Using resting-state functional MRI, we assessed both resting-state-fMRI global system segregation, i.e. the balance of between-network to within-network connectivity, and the alternate index of modularity Q as predictors of cognitive resilience. We performed all analyses in two independent samples for validation: First, we included 108 individuals with autosomal dominantly inherited Alzheimer's disease and 71 non-carrier controls. Second, we included 156 amyloid-PET positive subjects across the spectrum of sporadic Alzheimer's disease as well as 184 amyloid-negative controls. In the autosomal dominant Alzheimer's disease sample, disease severity was assessed by estimated years from symptom onset. In the sporadic Alzheimer's sample, disease stage was assessed by temporal-lobe tau-PET (i.e. composite across Braak stage I & III regions). In both samples, we tested whether the effect of disease severity on cognition was attenuated at higher levels of functional network segregation. For autosomal dominant Alzheimer's disease, we found higher fMRI-assessed system segregation to be associated with an attenuated effect of estimated years from symptom onset on global cognition (p = 0.007). Similarly, for sporadic Alzheimer's disease patients, higher fMRI-assessed system segregation was associated with less decrement in global cognition (p = 0.001) and episodic memory (p = 0.004) per unit increase of temporal lobe tau-PET. Confirmatory analyses using the alternate index of modularity Q revealed consistent results. In conclusion, higher segregation of functional connections into distinct large-scale networks supports cognitive resilience in Alzheimer's disease

    Pattern and degree of individual brain atrophy predicts dementia onset in dominantly inherited Alzheimer's disease

    Get PDF
    Introduction: Asymptomatic and mildly symptomatic dominantly inherited Alzheimer's disease mutation carriers (DIAD-MC) are ideal candidates for preventative treatment trials aimed at delaying or preventing dementia onset. Brain atrophy is an early feature of DIAD-MC and could help predict risk for dementia during trial enrollment. Methods: We created a dementia risk score by entering standardized gray-matter volumes from 231 DIAD-MC into a logistic regression to classify participants with and without dementia. The score's predictive utility was assessed using Cox models and receiver operating curves on a separate group of 65 DIAD-MC followed longitudinally. Results: Our risk score separated asymptomatic versus demented DIAD-MC with 96.4% (standard error = 0.02) and predicted conversion to dementia at next visit (hazard ratio = 1.32, 95% confidence interval [CI: 1.15, 1.49]) and within 2 years (area under the curve = 90.3%, 95% CI [82.3%–98.2%]) and improved prediction beyond established methods based on familial age of onset. Discussion: Individualized risk scores based on brain atrophy could be useful for establishing enrollment criteria and stratifying DIAD-MC participants for prevention trials

    Serum neurofilament light chain levels are associated with white matter integrity in autosomal dominant Alzheimer's disease

    Get PDF
    Neurofilament light chain (NfL) is a protein that is selectively expressed in neurons. Increased levels of NfL measured in either cerebrospinal fluid or blood is thought to be a biomarker of neuronal damage in neurodegenerative diseases. However, there have been limited investigations relating NfL to the concurrent measures of white matter (WM) decline that it should reflect. White matter damage is a common feature of Alzheimer's disease. We hypothesized that serum levels of NfL would associate with WM lesion volume and diffusion tensor imaging (DTI) metrics cross-sectionally in 117 autosomal dominant mutation carriers (MC) compared to 84 non-carrier (NC) familial controls as well as in a subset (N = 41) of MC with longitudinal NfL and MRI data. In MC, elevated cross-sectional NfL was positively associated with WM hyperintensity lesion volume, mean diffusivity, radial diffusivity, and axial diffusivity and negatively with fractional anisotropy. Greater change in NfL levels in MC was associated with larger changes in fractional anisotropy, mean diffusivity, and radial diffusivity, all indicative of reduced WM integrity. There were no relationships with NfL in NC. Our results demonstrate that blood-based NfL levels reflect WM integrity and supports the view that blood levels of NfL are predictive of WM damage in the brain. This is a critical result in improving the interpretability of NfL as a marker of brain integrity, and for validating this emerging biomarker for future use in clinical and research settings across multiple neurodegenerative diseases
    corecore