6,098 research outputs found

    Image readout device with electronically variable spatial resolution

    Get PDF
    An invention relating to the use of a standing acoustic wave charge storage device as an image readout device is described. A frequency f sub 1 was applied to the storage transfer device to create a traveling electric field in the device in one direction along a straight line. A second frequency f sub 2 was applied to the charge transfer device to create a traveling electric field opposite to the first traveling electric field. A standing wave was created. When an image was focused on the charge transfer device, light was stored in the wells of the standing wave. When the frequency f sub 2 is removed from the device, the standing wave tends to break up and the charges stored move to an electrode connected to an output terminal and to a utilization device where the received charges represent the image on the surface of the charge transfer device along a projection of said straight line

    Efficient SAR Raw Data Compression in Frequency Domain

    Get PDF
    SAR raw data compression is necessary to reduce huge amounts of SAR data for a memory on board a satellite, space shuttle or aircraft and for later downlink to a ground station. In view of interferometric and polarimetric applications for SAR data, it becomes more and more important to pay attention to phase errors caused by data compression. Herein, a detailed comparison of block adaptive quantization in time domain (BAQ) and in frequency domain (FFT-BAQ) is given. Inclusion of raw data compression in the processing chain allows an efficient use of the FFT-BAQ and makes implementation for on-board data compression feasible. The FFT-BAQ outperforms the BAQ in terms of signal-to-quantization noise ratio and phase error and allows a direct decimation of the oversampled data equivalent to FIR-filtering in time domain. Impacts on interferometric phase and coherency are also given

    Transport properties of a spin-1/2 Heisenberg chain with an embedded spin-S impurity

    Full text link
    The finite temperature transport properties of a spin-1/2 anisotropic Heisenberg chain with an embedded spin-S impurity are studied. Using primarily numerical diagonalization techniques, we study the dependence of the dynamical spin and thermal conductivities on the lattice size, the magnitude of the impurity spin, the host-impurity coupling, the easy axis anisotropy, as well as the dependence on temperature. Particularly for the temperature dependence, we discuss the screening of the impurity by the chain eventually leading to the cutting or healing of the host chain. Numerical results are supported by analytical arguments obtained in the strong host-impurity coupling regime.Comment: 7 pages, 10 figure

    Spectral Hardening of Large Solar Flares

    Full text link
    RHESSI observations are used to quantitatively study the hard X-ray evolution in 5 large solar flares selected for spectral hardening in the course of the event. The X-ray bremsstrahlung emission from non-thermal electrons is characterized by two spectroscopically distinct phases: impulsive and gradual. The impulsive phase usually consists of several emission spikes following a soft-hard-soft spectral pattern, whereas the gradual stage manifests itself as spectral hardening while the flux slowly decreases. Both the soft-hard-soft (impulsive) phase and the hardening (gradual) phase are well described by piecewise linear dependence of the photon spectral index on the logarithm of the hard X-ray flux. The different linear parts of this relation correspond to different rise and decay phases of emission spikes. The temporal evolution of the spectra is compared with the configuration and motion of the hard X-ray sources in RHESSI images. These observations reveal that the two stages of electron acceleration causing these two different behaviors are closely related in space and time. The transition between the impulsive and gradual phase is found to be smooth and progressive rather than abrupt. This suggests that they arise because of a slow change in a common accelerator rather than being caused by two independent and distinct acceleration processes. We propose that the hardening during the decay phase is caused by continuing particle acceleration with longer trapping in the accelerator before escape.Comment: accepted by Ap

    How primordial is the structure of comet 67P/C-G? Combined collisional and dynamical models suggest a late formation

    Get PDF
    There is an active debate about whether the properties of comets as observed today are primordial or, alternatively, if they are a result of collisional evolution or other processes. We investigate the effects of collisions on a comet with a structure like 67P/C-G. We develop scaling laws for the critical specific impact energies required for a significant shape alteration. These are then used in simulations of the combined dynamical and collisional evolution of comets in order to study the survival probability of a primordially formed object with a shape like 67P/C-G. The effects of impacts on comet 67P/C-G are studied using a SPH shock physics code. The resulting critical specific impact energy defines a minimal projectile size which is used to compute the number of shape-changing collisions in a set of dynamical simulations. These simulations follow the dispersion of the trans-Neptunian disk during the giant planet instability, the formation of a scattered disk, and produce 87 objects that penetrate into the inner solar system with orbits consistent with the observed JFC population. The collisional evolution before the giant planet instability is not considered here. Hence, our study is conservative in its estimation of the number of collisions. We find that in any scenario considered here, comet 67P/C-G would have experienced a significant number of shape-changing collisions, if it formed primordially. This is also the case for generic bi-lobe shapes. Our study also shows that impact heating is very localized and that collisionally processed bodies can still have a high porosity. Our study indicates that the observed bi-lobe structure of comet 67P/C-G may not be primordial, but might have originated in a rather recent event, possibly within the last 1 Gy. This may be the case for any kilometer-sized two-component cometary nuclei.Comment: Astronomy & Astrophysics, accepted pending minor revision

    Do solar decimetric spikes originate in coronal X-ray sources?

    Full text link
    In the standard solar flare scenario, a large number of particles are accelerated in the corona. Nonthermal electrons emit both X-rays and radio waves. Thus, correlated signatures of the acceleration process are predicted at both wavelengths, coinciding either close to the footpoints of a magnetic loop or near the coronal X-ray source. We attempt to study the spatial connection between coronal X-ray emission and decimetric radio spikes to determine the site and geometry of the acceleration process. The positions of radio-spike sources and coronal X-ray sources are determined and analyzed in a well-observed limb event. Radio spikes are identified in observations from the Phoenix-2 spectrometer. Data from the Nan\c{c}ay radioheliograph are used to determine the position of the radio spikes. RHESSI images in soft and hard X-ray wavelengths are used to determine the X-ray flare geometry. Those observations are complemented by images from GOES/SXI. We find that decimetric spikes do not originate from coronal X-ray flare sources contrary to previous expectations. However, the observations suggest a causal link between the coronal X-ray source, related to the major energy release site, and simultaneous activity in the higher corona.Comment: 4 pages, 3 figures, A&AL accepte

    The spectral evolution of impulsive solar X-ray flares. II.Comparison of observations with models

    Full text link
    We study the evolution of the spectral index and the normalization (flux) of the non-thermal component of the electron spectra observed by RHESSI during 24 solar hard X-ray flares. The quantitative evolution is confronted with the predictions of simple electron acceleration models featuring the soft-hard-soft behaviour. The comparison is general in scope and can be applied to different acceleration models, provided that they make predictions for the behavior of the spectral index as a function of the normalization. A simple stochastic acceleration model yields plausible best-fit model parameters for about 77% of the 141 events consisting of rise and decay phases of individual hard X-ray peaks. However, it implies unphysically high electron acceleration rates and total energies for the others. Other simple acceleration models such as constant rate of accelerated electrons or constant input power have a similar failure rate. The peaks inconsistent with the simple acceleration models have smaller variations in the spectral index. The cases compatible with a simple stochastic model require typically a few times 10^36 electrons accelerated per second at a threshold energy of 18 keV in the rise phases and 24 keV in the decay phases of the flare peaks.Comment: 9 pages, 4 figures, accepted for publication by A&

    Decimetric gyrosynchrotron emission during a solar flare

    Get PDF
    A decimetric, microwave, and hard X-ray burst was observed during a solar flare in which the radio spectrum below peak flux fits an f+2 power law over more than a decade in frequency. The spectrum is interpreted to mean that the radio emission originated in a homogeneous, thermal, gyrosynchrotron source. This is the first time that gyrosynchrotron radiation has been identified at such low decimetric frequencies (900-998) MHz). The radio emission was cotemporal with the largest single hard X-ray spike burst ever reported. The spectrum of the hard X-ray burst can be well represented by a thermal bremsstrahlung function over the energy range from 30 to 463 keV at the time of maximum flux. The temporal coincidence and thermal form of both the X-ray and radio spectra suggest a common source electron distribution. The unusual low-frequency extent of the single-temperature thermal radio spectrum and its association with the hard X-ray burst imply that the source had an area approx. 10(18) sq cm a temperature approx 5x10(8) K, an electron density approx. 7.10(9) cu cm and a magnetic field of approx. 120 G. H(alpha) and 400-800 MHz evidence suggest that a loop structure of length 10,000 km existed in the flare active region which could have been the common, thermal source of the observed impulsive emissions
    • …
    corecore