4 research outputs found

    Association analysis revealed loci linked to post-drought recovery and traits related to persistence of smooth bromegrass (Bromus inermis)

    No full text
    Association analysis has been proven as a powerful tool for the genetic dissection of complex traits. This study was conducted to identify association of recovery, persistence, and summer dormancy with sequence related amplified polymorphism (SRAP) markers in 36 smooth bromegrass genotypes under two moisture conditions and find stable associations. In this study, a diverse panel of polycross-derived progenies of smooth bromegrass was phenotyped under normal and water deficit regimes for three consecutive years. Under water deficit, dry matter yield of cut 1 was approximately reduced by 36, 39, and 37% during 2013, 2014, and 2015, respectively, compared with the normal regime. For dry matter yield of cut 2, these reductions were approximately 38, 60, and 56% in the same three consecutive years relative to normal regime. Moreover, water deficit decreased the RY and PER of the genotypes by 35 and 28%, respectively. Thirty primer combinations were screened by polymerase chain reaction (PCR). From these, 541 polymorphic bands were developed and subjected to association analysis using the mixed linear model (MLM). Population structure analysis identified five main subpopulations possessing significant genetic differences. Association analysis identified 69 and 46 marker-trait associations under normal and water deficit regimes, respectively. Some of these markers were associated with more than one trait; which can be attributed to pleiotropic effects or tightly linked genes affecting several traits. In normal and water-deficit regimes, these markers could potentially be incorporated into marker-assisted selection and targeted trait introgression for the improvement of drought tolerance of smooth bromegrass

    Life Cycle Assessment of Hybrid Nanofiltration Desalination Plants in the Persian Gulf

    No full text
    Although emerging desalination technologies such as hybrid technologies are required to tackle water scarcity, the impacts of their application on the environment, resources, and human health, as prominent pillars of sustainability, should be evaluated in parallel. In the present study, the environmental footprint of five desalination plants, including multi-stage flash (MSF), hybrid reverse osmosis (RO)–MSF, hybrid nanofiltration (NF)–MSF, RO, and hybrid NF–RO, in the Persian Gulf region, have been analyzed using life cycle assessment (LCA) as an effective tool for policy making and opting sustainable technologies. The comparison was based on the impacts on climate change, ozone depletion, fossil depletion, human toxicity, and marine eutrophication. The LCA results revealed the superiority of the hybrid NF–RO plant in having the lowest environmental impact, although the RO process produces more desalinated water at the same feed and input flow rates. The hybrid NF–RO system achieves 1.74 kg CO2 equivalent, 1.24 × 10−7 kg CFC-11 equivalent, 1.28 × 10−4 kg nitrogenous compounds, 0.16 kg 1,4-DB equivalent, and 0.56 kg oil equivalent in the mentioned impact indicators, which are 7.9 to 22.2% lower than the single-pass RO case. Furthermore, the sensitivity analysis showed the reliability of the results, which helps to provide an insight into the life cycle impacts of the desalination plants

    A Smart Sustainable Decision Support System For Water Management Of Power Plants In Water Stress Regions

    Get PDF
    Power Plants (PPs) is considered as critical facilities in each region because of essential role through energy generation processes. These facilities are also depended to water availability especially in water stress areas. Due to the critical water shortage in many areas around the world, it is necessary to make an optimal condition among water consumption and the increasing demand for electricity to prevent any further conflict of interests between industry, householders and the environmental goals. There are different techniques for controlling Water Consumption (WC) in these industries. This paper develops a smart Decision Support System (DSS) for monitoring, prediction and control sections based on Artificial Intelligent (AI) and integration of the PESTEL matrix and Multi Criteria Decision Making (MCDM) methods. Monitoring section comprises Fuel Consumption (FC), Atmospheric Temperature (AT), Power Plant Temperature (PPT) and Power Plant Efficiency (PPE), in which FC has the most influence on WC based on ANOVA evaluations in both cold and warm seasons. The prediction results have illustrated that Adaptive Neuro Fuzzy Inference System model is more efficient for the WC estimation with a correlation coefficient over 0.99. Ordered Weighted Averaging (OWA) also demonstrated that in the optimistic and pessimistic states, the most priority is linked to E3 (Establishment of evaporation control systems by contractor companies and concluding a guaranteed purchase contract with a power plant worth one and a half times the current amount of water price). In the last step of technical approaches, the smart controlling system is added for execution of water-energy nexus in the PP based on proportional–integral–derivative controller system. Finally, the performance of the DSS is approved with more than 80% agreement of experts and more than 90% precision in prediction procedure through this investigation. Application of this DSS can also be helpful for developing countries to achieve the UN Sustainable Development Goals
    corecore