5,906 research outputs found

    Near-flat space limit and Einstein manifolds

    Full text link
    We study the near-flat space limit for strings on AdS(5)xM(5), where the internal manifold M(5) is equipped with a generic metric with U(1)xU(1)xU(1) isometry. In the bosonic sector, the limiting sigma model is similar to the one found for AdS(5)xS(5), as the global symmetries are reduced in the most general case. When M(5) is a Sasaki-Einstein space like T(1,1), Y(p,q) and L(p,q,r), whose dual CFT's have N=1 supersymmetry, the near-flat space limit gives the same bosonic sector of the sigma model found for AdS(5)xS(5). This indicates the generic presence of integrable subsectors in AdS/CFT.Comment: 30 pages, 1 figur

    Implications of Hadron Collider Observables on Parton Distribution Function Uncertainties

    Get PDF
    Standard parton distribution function sets do not have rigorously quantified uncertainties. In recent years it has become apparent that these uncertainties play an important role in the interpretation of hadron collider data. In this paper, using the framework of statistical inference, we illustrate a technique that can be used to efficiently propagate the uncertainties to new observables, assess the compatibility of new data with an initial fit, and, in case the compatibility is good, include the new data in the fit.Comment: 22 pages, 5 figure

    Zonotopes and four-dimensional superconformal field theories

    Get PDF
    The a-maximization technique proposed by Intriligator and Wecht allows us to determine the exact R-charges and scaling dimensions of the chiral operators of four-dimensional superconformal field theories. The problem of existence and uniqueness of the solution, however, has not been addressed in general setting. In this paper, it is shown that the a-function has always a unique critical point which is also a global maximum for a large class of quiver gauge theories specified by toric diagrams. Our proof is based on the observation that the a-function is given by the volume of a three dimensional polytope called "zonotope", and the uniqueness essentially follows from Brunn-Minkowski inequality for the volume of convex bodies. We also show a universal upper bound for the exact R-charges, and the monotonicity of a-function in the sense that a-function decreases whenever the toric diagram shrinks. The relationship between a-maximization and volume-minimization is also discussed.Comment: 29 pages, 15 figures, reference added, typos corrected, version published in JHE

    A Meinardus theorem with multiple singularities

    Full text link
    Meinardus proved a general theorem about the asymptotics of the number of weighted partitions, when the Dirichlet generating function for weights has a single pole on the positive real axis. Continuing \cite{GSE}, we derive asymptotics for the numbers of three basic types of decomposable combinatorial structures (or, equivalently, ideal gas models in statistical mechanics) of size nn, when their Dirichlet generating functions have multiple simple poles on the positive real axis. Examples to which our theorem applies include ones related to vector partitions and quantum field theory. Our asymptotic formula for the number of weighted partitions disproves the belief accepted in the physics literature that the main term in the asymptotics is determined by the rightmost pole.Comment: 26 pages. This version incorporates the following two changes implied by referee's remarks: (i) We made changes in the proof of Proposition 1; (ii) We provided an explanation to the argument for the local limit theorem. The paper is tentatively accepted by "Communications in Mathematical Physics" journa

    Central Extensions of Finite Heisenberg Groups in Cascading Quiver Gauge Theories

    Full text link
    Many conformal quiver gauge theories admit nonconformal generalizations. These generalizations change the rank of some of the gauge groups in a consistent way, inducing a running in the gauge couplings. We find a group of discrete transformation that acts on a large class of these theories. These transformations form a central extension of the Heisenberg group, generalizing the Heisenberg group of the conformal case, when all gauge groups have the same rank. In the AdS/CFT correspondence the nonconformal quiver gauge theory is dual to supergravity backgrounds with both five-form and three-form flux. A direct implication is that operators counting wrapped branes satisfy a central extension of a finite Heisenberg group and therefore do not commute.Comment: 25 pages, 12 figure

    Counting BPS Operators in Gauge Theories: Quivers, Syzygies and Plethystics

    Get PDF
    We develop a systematic and efficient method of counting single-trace and multi-trace BPS operators with two supercharges, for world-volume gauge theories of NN D-brane probes for both NN \to \infty and finite NN. The techniques are applicable to generic singularities, orbifold, toric, non-toric, complete intersections, et cetera, even to geometries whose precise field theory duals are not yet known. The so-called ``Plethystic Exponential'' provides a simple bridge between (1) the defining equation of the Calabi-Yau, (2) the generating function of single-trace BPS operators and (3) the generating function of multi-trace operators. Mathematically, fascinating and intricate inter-relations between gauge theory, algebraic geometry, combinatorics and number theory exhibit themselves in the form of plethystics and syzygies.Comment: 59+1 pages, 7 Figure

    Finite Heisenberg Groups in Quiver Gauge Theories

    Full text link
    We show by direct construction that a large class of quiver gauge theories admits actions of finite Heisenberg groups. We consider various quiver gauge theories that arise as AdS/CFT duals of orbifolds of C^3, the conifold and its orbifolds and some orbifolds of the cone over Y(p,q). Matching the gauge theory analysis with string theory on the corresponding spaces implies that the operators counting wrapped branes do not commute in the presence of flux.Comment: 25 pages, 13 figure

    Scaling in many-body systems and proton structure function

    Get PDF
    The observation of scaling in processes in which a weakly interacting probe delivers large momentum q{\bf q} to a many-body system simply reflects the dominance of incoherent scattering off target constituents. While a suitably defined scaling function may provide rich information on the internal dynamics of the target, in general its extraction from the measured cross section requires careful consideration of the nature of the interaction driving the scattering process. The analysis of deep inelastic electron-proton scattering in the target rest frame within standard many-body theory naturally leads to the emergence of a scaling function that, unlike the commonly used structure functions F1F_1 and F2F_2, can be directly identified with the intrinsic proton response.Comment: 11 pages, 4 figures. Proceedings of the 11th Conference on Recent Progress in Many-Body Theories, Manchester, UK, July 9-13 200

    Finite Heisenbeg Groups and Seiberg Dualities in Quiver Gauge Theories

    Full text link
    A large class of quiver gauge theories admits the action of finite Heisenberg groups of the form Heis(Z_q x Z_q). This Heisenberg group is generated by a manifest Z_q shift symmetry acting on the quiver along with a second Z_q rephasing (clock) generator acting on the links of the quiver. Under Seiberg duality, however, the action of the shift generator is no longer manifest, as the dualized node has a different structure from before. Nevertheless, we demonstrate that the Z_q shift generator acts naturally on the space of all Seiberg dual phases of a given quiver. We then prove that the space of Seiberg dual theories inherits the action of the original finite Heisenberg group, where now the shift generator Z_q is a map among fields belonging to different Seiberg phases. As examples, we explicitly consider the action of the Heisenberg group on Seiberg phases for C^3/Z_3, Y^{4,2} and Y^{6,3} quiver.Comment: 22 pages, five figure

    Knowledge, Food and Place: a way of producing a way of knowing

    Get PDF
    The article examines the dynamics of knowledge in the valorisation of local food, drawing on the results from the CORASON project (A cognitive approach to rural sustainable development: the dynamics of expert and lay knowledge), funded by the EU under its Framework Programme 6. It is based on the analysis of several in-depth case studies on food relocalisation carried out in 10 European countries
    corecore