51 research outputs found

    Change of charge variant composition of trastuzumab upon stressing at physiological conditions

    Get PDF
    Cation-exchange chromatography is a widely used approach to study charge heterogeneity of monoclonal antibodies. Heterogeneity may arise both in vitro and in vivo because of the susceptibility of monoclonal antibodies to undergo chemical modifications. Modifications may adversely affect the potency of the drug, induce immunogenicity or affect pharmacokinetics. In this study, we evaluated the application of optimized pH gradient systems for the separation of charge variants of trastuzumab after forced degradation study. pH gradient-based elution resulted in high-resolution separation of some 20 charge variants after 3 weeks at 37°C under physiological conditions. The charge variants were further characterized by LC-MS-based peptide mapping. There was no significant difference in the binding properties to HER2 or a range of Fcγ receptors between non-stressed and stressed trastuzumab.</p

    Cellular surface plasmon resonance-based detection of anti-HPA-1a antibody glycosylation in fetal and neonatal alloimmune thrombocytopenia

    Get PDF
    Fetal and neonatal alloimmune thrombocytopenia (FNAIT) can occur due to maternal IgG antibodies targeting platelet antigens, causing life-threatening bleeding in the neonate. However, the disease manifests itself in only a fraction of pregnancies, most commonly with anti-HPA-1a antibodies. We found that in particular, the core fucosylation in the IgG-Fc tail is highly variable in anti-HPA-1a IgG, which strongly influences the binding to leukocyte IgG-Fc receptors IIIa/b (FcγRIIIa/b). Currently, gold-standard IgG-glycoanalytics rely on complicated methods (e.g., mass spectrometry (MS)) that are not suited for diagnostic purposes. Our aim was to provide a simplified method to quantify the biological activity of IgG antibodies targeting cells. We developed a cellular surface plasmon resonance imaging (cSPRi) technique based on FcγRIII-binding to IgG-opsonized cells and compared the results with MS. The strength of platelet binding to FcγR was monitored under flow using both WT FcγRIIIa (sensitive to Fc glycosylation status) and mutant FcγRIIIa-N162A (insensitive to Fc glycosylation status). The quality of the anti-HPA-1a glycosylation was monitored as the ratio of binding signals from the WT versus FcγRIIIa-N162A, using glycoengineered recombinant anti-platelet HPA-1a as a standard. The method was validated with 143 plasma samples with anti-HPA-1a antibodies analyzed by MS with known clinical outcomes and tested for validation of the method. The ratio of patient signal from the WT versus FcγRIIIa-N162A correlated with the fucosylation of the HPA-1a antibodies measured by MS (r=-0.52). Significantly, FNAIT disease severity based on Buchanan bleeding score was similarly discriminated against by MS and cSPRi. In conclusion, the use of IgG receptors, in this case, FcγRIIIa, on SPR chips can yield quantitative and qualitative information on platelet-bound anti-HPA-1a antibodies. Using opsonized cells in this manner circumvents the need for purification of specific antibodies and laborious MS analysis to obtain qualitative antibody traits such as IgG fucosylation, for which no clinical test is currently available

    Role of N-Glycosylation in FcγRIIIa interaction with IgG

    Get PDF
    Immunoglobulins G (IgG) and their Fc gamma receptors (FcγRs) play important roles in our immune system. The conserved N-glycan in the Fc region of IgG1 impacts interaction of IgG with FcγRs and the resulting effector functions, which has led to the design of antibody therapeutics with greatly improved antibody-dependent cell cytotoxicity (ADCC) activities. Studies have suggested that also N-glycosylation of the FcγRIII affects receptor interactions with IgG, but detailed studies of the interaction of IgG1 and FcγRIIIa with distinct N-glycans have been hindered by the natural heterogeneity in N-glycosylation. In this study, we employed comprehensive genetic engineering of the N-glycosylation capacities in mammalian cell lines to express IgG1 and FcγRIIIa with different N-glycan structures to more generally explore the role of N-glycosylation in IgG1:FcγRIIIa binding interactions. We included FcγRIIIa variants of both the 158F and 158V allotypes and investigated the key N-glycan features that affected binding affinity. Our study confirms that afucosylated IgG1 has the highest binding affinity to oligomannose FcγRIIIa, a glycan structure commonly found on Asn162 on FcγRIIIa expressed by NK cells but not monocytes or recombinantly expressed FcγRIIIa

    DARC extracellular domain remodeling in maturating reticulocytes explains Plasmodium vivax tropism

    No full text
    Plasmodium vivax is the most prevalent parasite species that causes malaria in humans and exclusively infects reticulocytes. Reticulocyte infection is facilitated by P vivax Duffy binding protein (DBP), which utilizes DARC (Duffy antigen receptor for chemokines) as an entry point. However, the selective tropism of P vivax for transferrin receptor (CD71)-positive reticulocytes remained unexplained, given the constitutive expression of DARC during reticulocyte maturation. CD71/RNA double staining of reticulocytes enriched from adult peripheral blood reveals 4 distinct reticulocyte populations: CD71(high)/RNA(high) (∼0.016%), CD71(low)/RNA(high) (∼0.059%), CD71(neg)/RNA(high) (∼0.37%), CD71(neg)/RNA(low) (∼0.55%), and erythrocytes CD71(neg)/RNA(neg) (∼99%). We hypothesized that selective association of DBP with a small population of immature reticulocytes could explain the preference of P vivax for reticulocytes. Binding of specific monoclonal anti-DARC antibodies and recombinant DBP to CD71(high)/RNA(high) reticulocytes was significantly higher compared with other reticulocyte populations and erythrocytes. Interestingly, the total DARC protein throughout reticulocyte maturation was constant. The data suggest that selective exposure of the DBP binding site within DARC is key to the preferential binding of DBP to immature reticulocytes, which is the potential mechanism underlying the preferential infection of a reticulocyte subset by P viva

    Affinity of human IgG subclasses to mouse Fc gamma receptors

    No full text
    Human IgG is the main antibody class used in antibody therapies because of its efficacy and longer half-life, which are completely or partly due to Fc gamma R-mediated functions of the molecules. Preclinical testing in mouse models are frequently performed using human IgG, but no detailed information on binding of human IgG to mouse Fc gamma Rs is available. The orthologous mouse and human Fc gamma Rs share roughly 60-70% identity, suggesting some incompatibility. Here, we report binding affinities of all mouse and human IgG subclasses to mouse Fc gamma R. Human IgGs bound to mouse Fc gamma R with remarkably similar binding strengths as we know from binding to human ortholog receptors, with relative affinities IgG3 > IgG1 > IgG4 > IgG2 and Fc gamma RI >> Fc gamma RIV > Fc gamma RIII > Fc gamma RIIb. This suggests human IgG subclasses to have similar relative FcR-mediated biological activities in mic

    Multiplex blood group typing by cellular surface plasmon resonance imaging

    No full text
    BACKGROUND: Blood-group typing of donors and patients is essential to avoid incompatible transfusions. Transfusion of incompatible RBCs may result in alloimmunization complicating future transfusions or in the presence of antibodies in adverse reactions. With more than 300 blood group antigens identified, it is difficult to provide fully compatible blood. Currently, standard practice is to match for the most immunogenic antigens. While the current agglutination-based RBC-typing methods are reliable for testing a selected number of antigens, they are not easily adaptable for high-throughput multiplex blood typing beyond the current standard. STUDY DESIGN AND METHODS: Surface plasmon resonance (SPR) is a label-free method to follow molecular—and, very recently, also cellular—interactions in real time. Demonstration of binding of RBCs to blood group antigen-specific antibodies by SPR has already been achieved. Here, we demonstrate the generation of an SPR array equipped with clinically relevant blood group antibodies (A, B, and Rh blood groups). To validate this method, we blindly compared typing of 946 blood donors with results of current diagnostic agglutination-based methods. RESULTS: RBC typing was achieved by monitoring RBC binding to blood group–specific antibodies on the sensor simultaneously within 5 minutes per sample. Regeneration of the chip was robust, allowing for typing of at least 100 samples. The typing results gave a 100% match with classical serology with all antibodies tested besides anti-E/e monoclonals, which gave inconsistent results due to low antibody specificity. CONCLUSION: This study demonstrates that SPR-based RBC typing for multiple antigens can be realized simultaneously with high-quality antibodies, enabling reduced hands-on time and possibly improving cost efficiency

    Human IgE does not bind to human FcRn

    No full text
    The neonatal Fc receptor (FcRn) is known to mediate placental transfer of IgG from mother to unborn. IgE is widely known for triggering immune responses to environmental antigens. Recent evidence suggests FcRn-mediated transplacental passage of IgE during pregnancy. However, direct interaction of FcRn and IgE was not investigated. Here, we compared binding of human IgE and IgG variants to recombinant soluble human FcRn with β2-microglobulin (sFcRn) in surface plasmon resonance (SPR) at pH 7.4 and pH 6.0. No interaction was found between human IgE and human sFcRn. These results imply that FcRn can only transport IgE indirectly, and thereby possibly transfer allergenic sensitivity from mother to fetus

    Change of charge variant composition of trastuzumab upon stressing at physiological conditions

    No full text
    Cation-exchange chromatography is a widely used approach to study charge heterogeneity of monoclonal antibodies. Heterogeneity may arise both in vitro and in vivo because of the susceptibility of monoclonal antibodies to undergo chemical modifications. Modifications may adversely affect the potency of the drug, induce immunogenicity or affect pharmacokinetics. In this study, we evaluated the application of optimized pH gradient systems for the separation of charge variants of trastuzumab after forced degradation study. pH gradient-based elution resulted in high-resolution separation of some 20 charge variants after 3 weeks at 37°C under physiological conditions. The charge variants were further characterized by LC-MS-based peptide mapping. There was no significant difference in the binding properties to HER2 or a range of Fcγ receptors between non-stressed and stressed trastuzumab
    corecore