10 research outputs found

    Data Report for the 1993 Los Angeles Region Seismic Experiment (LARSE93), Southern California: A Passive Study From Seal Beach Northeastward through the Mojave Desert

    Get PDF
    This report contains a description of the first part of the Los Angeles Region Seismic Experiment (LARSE). To date, LARSE has consisted of two experiments: passive, which took place in fall, 1993 (LARSE93), and active, which took place in fall, 1994 (LARSE94). The goal of the 1993 experiment was to collect waveform data from local and distant earthquakes to obtain three-dimensional images of lower crust and upper mantle structure in Southern California, particularly under the San Gabriel Mountains and across the San Andreas fault. During LARSE93, approximately 88 stations were deployed in a 175-km-long, linear array across the Los Angeles basin, San Gabriel Mountains, and Mojave Desert northeast of Los Angeles by scientists from the U.S. Geological Survey, University of California at Los Angeles, California Institute of Technology, and University of Southern California. Reftek recorders were deployed one km apart through the San Gabriel Mountains, and two km apart in the Mojave Desert. This data set has since been complemented by the results of LARSE94 comprising land refraction and deep-crustal seismic reflection profiles from offshore airgun and onshore explosion sources. These additional data sets will be useful in distinguishing crustal structures from adjacent upper mantle structures. During the four weeks of continuous recording, over 150 teleseismic and over 450 local (ML ≥ 2.0) events were recorded at each site. Both teleseismic and local sources provided a wide range of raypath azimuths. The teleseismic events include a number of earthquakes with epicenters in the Aleutian Island, Kamchatka, Kuril Island, mid-Atlantic Ridge, Solomon Island, Japan, Fiji Island, Peru, and Chile regions. The local events include aftershocks of recent Southern California earthquakes. The final products of data processing are 1) half-hour files containing the continuous wavefonn data recorded at each station for each day of the experiment, 2) 150-second time-windowed waveform segments containing local, regional, and teleseismic event arrivals, and 3) one-hour time-windowed waveform segments containing regional and teleseismic event arrivals. Array instrumentation, recorded events, and data processing will be described in this report

    Data Report for the 1993 Los Angeles Region Seismic Experiment (LARSE93), Southern California: a passive study from Seal Beach northeastward through the Mojave Desert

    Get PDF
    This report contains a description of the first part of the Los Angeles Region Seismic Experiment (LARSE). To date, LARSE has consisted of two experiments: passive, which took place in fall, 1993 (LARSE93), and active, which took place in fall, 1994 (LARSE94). The goal of the 1993 experiment was to collect waveform data from local and distant earthquakes to obtain three-dimensional images of lower crust and upper mantle structure in Southern California, particularly under the San Gabriel Mountains and across the San Andreas fault. During LARSE93, approximately 88 stations were deployed in a 175-km-long, linear array across the Los Angeles basin, San Gabriel Mountains, and Mojave Desert northeast of Los Angeles by scientists from the U.S. Geological Survey, University of California at Los Angeles, California Institute of Technology, and University of Southern California. Reftek recorders were deployed one km apart through the San Gabriel Mountains, and two km apart in the Mojave Desert. This data set has since been complemented by the results of LARSE94 comprising land refraction and deep-crustal seismic reflection profiles from offshore airgun and onshore explosion sources. These additional data sets will be useful in distinguishing crustal structures from adjacent upper mantle structures. During the four weeks of continuous recording, over 150 teleseismic and over 450 local (M_L ≥ 2.0) events were recorded at each site. Both teleseismic and local sources provided a wide range of raypath azimuths. The teleseismic events include a number of earthquakes with epicenters in the Aleutian Island, Kamchatka, Kuril Island, mid-Atlantic Ridge, Solomon Island, Japan, Fiji Island, Peru, and Chile regions. The local events include aftershocks of recent Southern California earthquakes. The final products of data processing are 1) half-hour files containing the continuous wavefonn data recorded at each station for each day of the experiment, 2) 150-second time-windowed waveform segments containing local, regional, and teleseismic event arrivals, and 3) one-hour time-windowed waveform segments containing regional and teleseismic event arrivals. Array instrumentation, recorded events, and data processing will be described in this report

    Images of Crust Beneath Southern California Will Aid Study of Earthquakes and Their Effects

    Get PDF
    The Whittier Narrows earthquake of 1987 and the Northridge earthquake of 1991 highlighted the earthquake hazards associated with buried faults in the Los Angeles region. A more thorough knowledge of the subsurface structure of southern California is needed to reveal these and other buried faults and to aid us in understanding how the earthquake-producing machinery works in this region

    Understanding earthquake hazards in southern California - the "LARSE" project - working toward a safer future for Los Angeles

    Get PDF
    The Los Angeles region is underlain by a network of active faults, including many that are deep and do not break the Earth’s surface. These hidden faults include the previously unknown one responsible for the devastating January 1994 Northridge earthquake, the costliest quake in U.S. history. So that structures can be built or strengthened to withstand the quakes that are certain in the future, the Los Angeles Region Seismic Experiment (LARSE) is locating hidden earthquake hazards beneath the region to help scientists determine where the strongest shaking will occur

    Refining the alkenone-pCO2 method I: Lessons from the Quaternary glacial cycles

    No full text
    The alkenone-pCO2 method is one of the most widely used approaches to reconstruct atmospheric CO2 in the Cenozoic. The method depends upon fractionation of stable carbon isotopes during algal photosynthesis, expressed as ep37:2, and a physiological scaling parameter, b, that accounts for biological factors such as growth rate, cell size, and membrane permeability. Alkenone-derived CO2 records for the late Pleistocene, however, are poorly correlated with ice core CO2, challenging the classic model that considers most of the CO2 used for coccolithophore photosynthesis to be acquired through simple diffusion. In this study, we investigate the nature of the b term and the underlying patterns of the sensitivity of ep37:2 to pCO2 changes. We generated two new ep37:2 records from the South China Sea (MD01-2392) and tropical Atlantic Ocean (ODP 668B) and compiled other published ep37:2 records over glacial-interglacial cycles. Using the ep37:2 data, ocean temperature estimates, and ice core CO2, we were able to back-calculate the corresponding values of b. At all locations, b varies over glacial cycles. The highest values of b correspond to peak interglacial stages, indicating that the phytoplankton growth rate is faster or cell size is smaller during interglacials than during glacial periods. We further show that the range of ep37:2 between glacial and interglacial conditions, Dep37:2, scales with growth conditions, consistent with the predictions of the carbon isotope fractionation model based on CO2 diffusion. In other words, the sensitivity of ep37:2 to pCO2 changes increases where the modern b values are large, contradicting the recommendations that oligotrophic sites are the best for alkenone-CO2 applications because of the presumed stability of b. Using the average back-calculated b value for each site, the composite pCO2 estimates from MD01-2392 and ODP 668B – the two sites with adequate Dep37:2 sensitivity – show broad agreement with the ice core CO2 record

    Quellen- und Literaturverzeichnis

    No full text

    Literaturverzeichnis

    No full text
    corecore