352 research outputs found

    Interobserver variation of the histopathological diagnosis in clinical trials on glioma: a clinician’s perspective

    Get PDF
    Several studies have provided ample evidence of a clinically significant interobserver variation of the histological diagnosis of glioma. This interobserver variation has an effect on both the typing and grading of glial tumors. Since treatment decisions are based on histological diagnosis and grading, this affects patient care: erroneous classification and grading may result in both over- and undertreatment. In particular, the radiotherapy dosage and the use of chemotherapy are affected by tumor grade and lineage. It also affects the conduct and interpretation of clinical trials on glioma, in particular of studies into grade II and grade III gliomas. Although trials with central pathology review prior to inclusion will result in a more homogeneous patient population, the interpretation and external validity of such trials are still affected by this, and the question whether results of such trials can be generalized to patients diagnosed and treated elsewhere remains to be answered. Although molecular classification may help in typing and grading tumors, as of today this is still in its infancy and unlikely to completely replace histological classification. Routine pathology review in everyday clinical practice should be considered. More objective histological criteria for the grade and lineage of gliomas are urgently needed

    What is a glioblastoma?

    Get PDF

    Temporal muscle thickness is an independent prognostic marker in patients with progressive glioblastoma: translational imaging analysis of the EORTC 26101 trial

    Full text link
    BACKGROUND: Temporal muscle thickness (TMT) was described as surrogate marker of skeletal muscle mass. This study aimed to evaluate the prognostic relevance of TMT in patients with progressive glioblastoma. METHODS: TMT was analyzed on cranial magnetic resonance images of 596 patients with progression of glioblastoma after radio-chemotherapy enrolled in the EORTC 26101 trial. An optimal TMT cutoff for overall survival (OS) and progression free survival (PFS) was defined in the training cohort (n=260, phase 2). Patients were grouped as "below" or "above" the TMT cutoff and associations with OS and PFS were tested using the Cox model adjusted for important risk factors. Findings were validated in a test cohort (n=308, phase 3). RESULTS: An optimal baseline TMT cutoff of 7.2 mm was obtained in the training cohort for both OS and PFS (AUC=0.64). Univariate analyses estimated a hazard ratio (HR) of 0.54 (95% CI: 0.42, 0.70, p<0.0001) for OS and a HR of 0.49 (95% CI: 0.38, 0.64, p<0.0001) for PFS for the comparison of training cohort patients above versus below the TMT cutoff. Similar results were obtained in Cox models adjusted for important risk factors with relevance in the trial for OS (HR of 0.54, 95% CI: 0.41, 0.70, p<0.0001) and PFS (HR of 0.47, 95% CI: 0.36, 0.61, p<0.0001). Results were confirmed in the validation cohort. CONCLUSION: Reduced TMT is an independent negative prognostic parameter in patients with progressive glioblastoma and may help to facilitate patient management by supporting patient stratification for therapeutic interventions or clinical trials

    Adjuvant and concurrent temozolomide for 1p/19q non-co-deleted anaplastic glioma (CATNON; EORTC study 26053-22054): second interim analysis of a randomised, open-label, phase 3 study

    Full text link
    BACKGROUND The CATNON trial investigated the addition of concurrent, adjuvant, and both current and adjuvant temozolomide to radiotherapy in adults with newly diagnosed 1p/19q non-co-deleted anaplastic gliomas. The benefit of concurrent temozolomide chemotherapy and relevance of mutations in the IDH1 and IDH2 genes remain unclear. METHODS This randomised, open-label, phase 3 study done in 137 institutions across Australia, Europe, and North America included patients aged 18 years or older with newly diagnosed 1p/19q non-co-deleted anaplastic gliomas and a WHO performance status of 0-2. Patients were randomly assigned (1:1:1:1) centrally using a minimisation technique to radiotherapy alone (59·4 Gy in 33 fractions; three-dimensional conformal radiotherapy or intensity-modulated radiotherapy), radiotherapy with concurrent oral temozolomide (75 mg/m2^{2} per day), radiotherapy with adjuvant oral temozolomide (12 4-week cycles of 150-200 mg/m2^{2} temozolomide given on days 1-5), or radiotherapy with both concurrent and adjuvant temozolomide. Patients were stratified by institution, WHO performance status score, age, 1p loss of heterozygosity, the presence of oligodendroglial elements on microscopy, and MGMT promoter methylation status. The primary endpoint was overall survival adjusted by stratification factors at randomisation in the intention-to-treat population. A second interim analysis requested by the independent data monitoring committee was planned when two-thirds of total required events were observed to test superiority or futility of concurrent temozolomide. This study is registered with ClinicalTrials.gov, NCT00626990. FINDINGS Between Dec 4, 2007, and Sept 11, 2015, 751 patients were randomly assigned (189 to radiotherapy alone, 188 to radiotherapy with concurrent temozolomide, 186 to radiotherapy and adjuvant temozolomide, and 188 to radiotherapy with concurrent and adjuvant temozolomide). Median follow-up was 55·7 months (IQR 41·0-77·3). The second interim analysis declared futility of concurrent temozolomide (median overall survival was 66·9 months [95% CI 45·7-82·3] with concurrent temozolomide vs 60·4 months [45·7-71·5] without concurrent temozolomide; hazard ratio [HR] 0·97 [99·1% CI 0·73-1·28], p=0·76). By contrast, adjuvant temozolomide improved overall survival compared with no adjuvant temozolomide (median overall survival 82·3 months [95% CI 67·2-116·6] vs 46·9 months [37·9-56·9]; HR 0·64 [95% CI 0·52-0·79], p<0·0001). The most frequent grade 3 and 4 toxicities were haematological, occurring in no patients in the radiotherapy only group, 16 (9%) of 185 patients in the concurrent temozolomide group, and 55 (15%) of 368 patients in both groups with adjuvant temozolomide. No treatment-related deaths were reported. INTERPRETATION Adjuvant temozolomide chemotherapy, but not concurrent temozolomide chemotherapy, was associated with a survival benefit in patients with 1p/19q non-co-deleted anaplastic glioma. Clinical benefit was dependent on IDH1 and IDH2 mutational status. FUNDING Merck Sharpe & Dohme

    Second-line chemotherapy with temozolomide in recurrent oligodendroglioma after PCV (procarbazine, lomustine and vincristine) chemotherapy: EORTC Brain Tumor Group phase II study 26972

    Get PDF
    BACKGROUND: Oligodendroglial tumors are chemosensitive, with two-thirds of patients responding to PCV combination chemotherapy with procarbazine, lomustine (CCNU) and vincristine. Temozolomide (TMZ), a new alkylating and methylating agent has shown high response rates in recurrent anaplastic astrocytoma. We investigated this drug in recurrent oligodendroglial tumors (OD) and mixed oligoastrocytomas (OA) after prior PCV chemotherapy and radiation therapy. PATIENTS AND METHODS: In a prospective non-randomized multicenter phase II trial patients were treated with TMZ 150 mg/m(2) on days 1-5 in cycles of 28 days for 12 cycles. Eligible patients had a recurrence after prior PCV chemotherapy, with measurable and enhancing disease as shown by magnetic resonance imaging. Pathology and all responses were centrally reviewed. RESULTS: Thirty-two eligible patients were included. In four patients the pathology review did not confirm the presence of an OD or OA. Twelve of 24 patients [50%, 95% confidence interval (CI) 29% to 71%] evaluable for response to first-line PCV chemotherapy had responded to PCV. Temozolomide was in general well tolerated; the most frequent side-effects were hematological. One patient discontinued treatment due to toxicity. In seven of 28 patients (25%, 95% CI 11% to 45%) with histologically confirmed OD an objective response to TMZ was observed. Median time to progression for responding patients was 8.0 months. After 6 and 12 months from the start of treatment, 29% and 11% of patients, respectively, were still free from progression. CONCLUSIONS: TMZ may be regarded as the preferred second-line treatment in OD after failure of PCV chemotherapy. Further studies on TMZ in OD are indicated

    Paraneoplastic cerebellar degeneration associated with antineuronal antibodies: analysis of 50 patients

    Get PDF
    Paraneoplastic cerebellar degeneration (PCD) is a heterogeneous group of disorders characterized by subacute cerebellar ataxia, specific tumour types and (often) associated antineuronal antibodies. Nine specific antineuronal antibodies are associated with PCD. We examined the relative frequency of the antineuronal antibodies associated with PCD and compared the neurological symptoms and signs, associated tumours, disability and survival between groups of PCD with different antibodies. Also, we attempted to identify patient-, tumour- and treatment-related characteristics associated with functional outcome and survival. In a 12-year period, we examined >5000 samples for the presence of antineuronal antibodies. A total of 137 patients were identified with a paraneoplastic neurological syndrome and high titre (> or =400) antineuronal antibodies. Fifty (36%) of these patients had antibody-associated PCD, including 19 anti-Yo, 16 anti-Hu, seven anti-Tr, six anti-Ri and two anti-mGluR1. Because of the low number, the anti-mGluR1 patients were excluded from the statistical analysis. While 100% of patients with anti-Yo, anti-Tr and anti-mGluR1 antibodies suffered PCD, 86% of anti-Ri and only 18% of anti-Hu patients had PCD. All patients presented with subacute cerebellar ataxia progressive over weeks to months and stabilized within 6 months. The majority of patients in all antibody groups had both truncal and appendicular ataxia. The frequency of nystagmus and dysarthria was lower in anti-Ri patients (33 and 0%). Later in the course of the disease, involvement of non-cerebellar structures occurred most frequently in anti-Hu patients (94%). In 42 patients (84%), a tumour was detected. The most commonly associated tumours were gynaecological and breast cancer (anti-Yo and anti-Ri), lung cancer (anti-Hu) and Hodgkin's lymphoma (anti-Tr and anti-mGluR1). In one anti-Hu patient, a suspect lung lesion on CT scan disappeared while the PCD evolved. Seven patients improved by at least 1 point on the Rankin scale, while 16 remained stable and 27 deteriorated. All seven patients that improved received antitumour treatment for their underlying cancer, resulting in complete remission. The functional outcome was best in the anti-Ri patients, with three out of six improving neurologically and five were able to walk at the time of last follow-up or death. Only four out of 19 anti-Yo and four out of 16 anti-Hu patients remained ambulatory. Also, survival from time of diagnosis was significantly worse in the anti-Yo (median 13 months) and anti-Hu (median 7 months) patients compared with anti-Tr (median >113 months) and anti-Ri (median >69 months). Patients receiving antitumour treatment (with or without immunosuppressive therapy) lived significantly longer [hazard ratio (HR) 0.3; 95% confidence interval (CI) 0.1-0.6; P = 0.004]. Patients > or =60 years old lived somewhat shorter from time of diagnosis, although statistically not significant (HR 2.9; CI 1.0-8.5; P = 0.06)

    Comprehensive Assessment of Incidence, Risk Factors, and Mechanisms of Impaired Medical and Psychosocial Health Outcomes among Adolescents and Young Adults with Cancer:Protocol of the Prospective Observational COMPRAYA Cohort Study

    Get PDF
    Simple Summary Adolescents and young adults (AYA), aged 18-39 years at first cancer diagnosis, are recognized as a distinct population within the oncology community due to the unique challenges they encounter including recognition, diagnosis, treatment, and monitoring of their disease. It is imperative for advances in the field of AYA oncology to pool data sources (patient-reported outcomes, clinical, treatment, genetic, and biological data) across institutions and countries and create large cohorts that include the full range of AYA ages and diagnoses to be able to address the many pressing questions that remain unanswered in this vulnerable population. The Dutch COMPRAYA study aims to examine the incidence, risk factors, and mechanisms of impaired health outcomes (short- and long-term medical and psychosocial effects) over time among AYA cancer patients. The overarching aim is to provide a research infrastructure for (future) data analyses and observational retrospective/prospective ancillary studies and to expand data collection to other countries. Adolescent and young adult (AYA) cancer patients suffer from delay in diagnosis, and lack of centralized cancer care, age-adjusted expertise, and follow-up care. This group presents with a unique spectrum of cancers, distinct tumor biology, cancer risk factors, developmental challenges, and treatment regimens that differ from children and older adults. It is imperative for advances in the field of AYA oncology to pool data sources across institutions and create large cohorts to address the many pressing questions that remain unanswered in this vulnerable population. We will create a nationwide infrastructure (COMPRAYA) for research into the incidence, predictive/prognostic markers, and underlying mechanisms of medical and psychosocial outcomes for AYA between 18-39 years diagnosed with cancer. A prospective, observational cohort of (n = 4000), will be established. Patients will be asked to (1) complete patient-reported outcome measures; (2) donate a blood, hair, and stool samples (to obtain biochemical, hormonal, and inflammation parameters, and germline DNA); (3) give consent for use of routinely archived tumor tissue and clinical data extraction from medical records and registries; (4) have a clinic visit to assess vital parameters. Systematic and comprehensive collection of patient and tumor characteristics of AYA will support the development of evidence-based AYA care programs and guidelines

    ESTRO-EANO guideline on target delineation and radiotherapy details for glioblastoma

    Full text link
    BACKGROUND AND PURPOSE Target delineation in glioblastoma is still a matter of extensive research and debate. This guideline aims to update the existing joint European consensus on delineation of the clinical target volume (CTV) in adult glioblastoma patients. MATERIAL AND METHODS The ESTRO Guidelines Committee identified 14 European experts in close interaction with the ESTRO clinical committee and EANO who discussed and analysed the body of evidence concerning contemporary glioblastoma target delineation, then took part in a two-step modified Delphi process to address open questions. RESULTS Several key issues were identified and are discussed including i) pre-treatment steps and immobilisation, ii) target delineation and the use of standard and novel imaging techniques, and iii) technical aspects of treatment including planning techniques and fractionation. Based on the EORTC recommendation focusing on the resection cavity and residual enhancing regions on T1-sequences with the addition of a reduced 15 mm margin, special situations are presented with corresponding potential adaptations depending on the specific clinical situation. CONCLUSIONS The EORTC consensus recommends a single clinical target volume definition based on postoperative contrast-enhanced T1 abnormalities, using isotropic margins without the need to cone down. A PTV margin based on the individual mask system and IGRT procedures available is advised; this should usually be no greater than 3 mm when using IGRT
    corecore