2,909 research outputs found

    A scanning probe-based pick-and-place procedure for assembly of integrated quantum optical hybrid devices

    Full text link
    Integrated quantum optical hybrid devices consist of fundamental constituents such as single emitters and tailored photonic nanostructures. A reliable fabrication method requires the controlled deposition of active nanoparticles on arbitrary nanostructures with highest precision. Here, we describe an easily adaptable technique that employs picking and placing of nanoparticles with an atomic force microscope combined with a confocal setup. In this way, both the topography and the optical response can be monitored simultaneously before and after the assembly. The technique can be applied to arbitrary particles. Here, we focus on nanodiamonds containing single nitrogen vacancy centers, which are particularly interesting for quantum optical experiments on the single photon and single emitter level.Comment: The following article has been submitted to Review of Scientific Instruments. After it is published, it will be found at http://rsi.aip.org

    Development of techniques for producing static strata maps and development of photointerpretation methods based on multitemporal LANDSAT data

    Get PDF
    The progress of research conducted in support of the Large Area Crop Inventory Experiment (LACIE) is documented. Specific tasks include (1) evaluation of the static stratification procedure and modification of that procedure if warranted, and (2) the development of alternative photointerpretative techniques to the present LACIE procedures for the identification and selection of training fields (areas)

    Development of techniques for producing static strata maps and development of photointerpretive methods based on multitemporal LANDSAT data

    Get PDF
    Progress in the evaluation of the static stratification procedure and the development of alternative photointerpretive techniques to the present LACIE procedure for the identification of training fields is reported. Statistically significant signature controlling variables were defined for use in refining the stratification procedure. A subset of the 1973-74 Kansas LACIE segments for wheat was analyzed

    Rapid assembly of highly-functionalised difluorinated cyclooctenones via ring-closing metathesis

    Get PDF
    Building block methodology from trifluoroethanol and ringclosing metathesis using a Fürstner modification of Grubbs’ conditions allows the rapid synthesis of novel difluorinated cyclooctenones

    Enhancement of the Zero Phonon Line emission from a Single NV-Center in a Nanodiamond via Coupling to a Photonic Crystal Cavity

    Full text link
    Using a nanomanipulation technique a nanodiamond with a single nitrogen vacancy center is placed directly on the surface of a gallium phosphide photonic crystal cavity. A Purcell-enhancement of the fluorescence emission at the zero phonon line (ZPL) by a factor of 12.1 is observed. The ZPL coupling is a first crucial step towards future diamond-based integrated quantum optical devices

    Power System Options Evaluated for the Radiation and Technology Demonstration Mission

    Get PDF
    The Radiation and Technology Demonstration (RTD) Mission is under joint study by three NASA Centers: the NASA Johnson Space Center, the NASA Goddard Space Flight Center, and the NASA Glenn Research Center at Lewis Field. This Earth-orbiting mission, which may launch on a space shuttle in the first half of the next decade, has the primary objective of demonstrating high-power electric thruster technologies. Secondary objectives include better characterization of Earth's Van Allen trapped-radiation belts, measurement of the effectiveness of the radiation shielding for human protection, measurement of radiation effects on advanced solar cells, and demonstration of radiation-tolerant microelectronics. During the mission, which may continue up to 1 year, the 2000-kg RTD spacecraft will first spiral outward from the shuttle-deployed, medium-inclination, low Earth orbit. By the phased operation of a 10-kW Hall thruster and a 10-kW Variable Specific Impulse Magneto-Plasma Rocket, the RTD spacecraft will reach a low-inclination Earth orbit with a radius greater than five Earth radii. This will be followed by an inward spiraling orbit phase when the spacecraft deploys 8 to 12 microsatellites to map the Van Allen belts. The mission will conclude in low Earth orbit with the possible retrieval of the spacecraft by the space shuttle. A conceptual RTD spacecraft design showing two photovoltaic (PV) array wings, the Hall thruster with propellant tanks, and stowed microsatellites is presented. Early power system studies assessed five different PV array design options coupled with a 120-Vdc power management and distribution system (PMAD) and secondary lithium battery energy storage. Array options include (1) state-of-the-art 10-percent efficient three-junction amorphous SiGe thin-film cells on thin polymer panels deployed with an inflatable (or articulated) truss, (2) SCARLET array panels, (3) commercial state-of-the-art, planar PV array rigid panels with 25-percent efficient, three-junction GaInP2/GaAs/Ge solar cells, (4) rigid panels with 25-percent efficient, three-junction GaInP2/GaAs/Ge solar cells, in a 2 -concentrator trough configuration, and (5) thin polymer panels with 25-percent efficient, three-junction GaInP2/GaAs/Ge solar cells deployed with an inflatable (or articulated) truss. To assess the relative merits of these PV array design options, the study group developed a dedicated Fortran code to predict power system performance and estimate system mass. This code also modeled Earth orbital environments important for accurately predicting PV array performance. The most important environmental effect, solar cell radiation degradation, was calculated from electron-proton fluence input from the industry standard AE8/AP8 trapped radiation models and the concept of damage equivalence. Power systems were sized to provide 10 kW of thruster power and approximately 1 kW of spacecraft power at end of life. Of the five PV array design options, the option 1 (thin-film cells) power system was the most massive 590 kg, whereas the option 4 (trough concentrator) power system was the lightest 260 kg. Arguably, the lowest cost would come from the option 3 (commercial array panels) power system with an acceptable, albeit greater, system mass of 320 kg. Predicted power system performance during the spiral-out mission phase is shown the preceding graph for the option 5 (flexible-panel) array. From the results, the radiation-induced power loss over time is evident as the spacecraft slowly spirals outward through the trapped proton belt. The importance of the spiral trip time is also evident in the two curves representing 74-day and 182-day spiral-out periods. The longer spiral time introduces a beginning-of-life power oversizing penalty greater than 1 kW. Future studies will analyze power system performance and mass with a 50-Vdc power management and distribution architecture favorable to the VASIMR thruster and longer missions

    Quantifying the Origin and Distribution of Intracluster Light in a Fornax-like Cluster

    Get PDF
    Using a cosmological NN-body simulation, we investigate the origin and distribution of stars in the intracluster light (ICL) of a Fornax-like cluster. In a dark matter only simulation we identify a halo which, at z=0z=0, has M200≃4.1×1013MsunM_200 \simeq 4.1 \times 10^{13}M_{sun} and r200=700kpcr_{200} = 700kpc, and replace infalling subhalos with models that include spheroid and disc components. As they fall into the cluster, the stars in some of these galaxies are stripped from their hosts, and form the ICL. We consider the separate contributions to the ICL from stars which originate in the haloes and the discs of the galaxies. We find that disc ICL stars are more centrally concentrated than halo ICL stars. The majority of the disc ICL stars are associated with one initially disc-dominated galaxy that falls to the centre of the cluster and is heavily disrupted, producing part of the cD galaxy. At radial distances greater than 200kpc, well beyond the stellar envelope of the cD galaxy, stars formerly from the stellar haloes of galaxies dominate the ICL. Therefore at large distances, the ICL population is dominated by older stars.Comment: Paper published as MNRAS , 2017, 467, 4501 This version corrects a small typo in the authors fiel
    • …
    corecore