9,375 research outputs found

    Application of remote sensing to selected problems within the state of California

    Get PDF
    Specific case studies undertaken to demonstrate the usefulness of remote sensing technology to resource managers in California are highlighted. Applications discussed include the mapping and quantization of wildland fire fuels in Mendocino and Shasta Counties as well as in the Central Valley; the development of a digital spectral/terrain data set for Colusa County; the Forsythe Planning Experiment to maximize the usefulness of inputs from LANDSAT and geographic information systems to county planning in Mendocino County; the development of a digital data bank for Big Basin State Park in Santa Cruz County; the detection of salinity related cotton canopy reflectance differences in the Central Valley; and the surveying of avocado acreage and that of other fruits and nut crops in Southern California. Special studies include the interpretability of high altitude, large format photography of forested areas for coordinated resource planning using U-2 photographs of the NASA Bucks Lake Forestry test site in the Plumas National Forest in the Sierra Nevada Mountains

    Arkansas Cotton Variety Test 1999

    Get PDF
    The primary aim of the Arkansas Cotton Variety Test is to provide unbiased data regarding the agronomic performance of cotton varieties in the major cotton growing areas in Arkansas. This information helps seed dealers establish marketing strategies and assists producers in choosing varieties to plant. In this way the annual test facilitates the inclusion of new, improved genetic material into Arkansas cotton production. The 1999 test had 67 entries (including 25 transgenic genotypes and 35 first-year entries), which were evaluated at sixsites in eastern Arkansas. The presence of four transgenic and five first-year entries among the top 10 yielding entries suggests that improvement is being accomplished in varietal development. This report also includes the Mississippi County Variety Test (an on-farm evaluation of selected varieties) and on-farm variety trials conducted by the Cooperative Extension Service

    Application of remote sensing to selected problems within the state of California

    Get PDF
    There are no author-identified significant results in this report

    Development of techniques for producing static strata maps and development of photointerpretive methods based on multitemporal LANDSAT data

    Get PDF
    Progress in the evaluation of the static stratification procedure and the development of alternative photointerpretive techniques to the present LACIE procedure for the identification of training fields is reported. Statistically significant signature controlling variables were defined for use in refining the stratification procedure. A subset of the 1973-74 Kansas LACIE segments for wheat was analyzed

    Gaussian approximations for stochastic systems with delay: chemical Langevin equation and application to a Brusselator system

    Full text link
    We present a heuristic derivation of Gaussian approximations for stochastic chemical reaction systems with distributed delay. In particular we derive the corresponding chemical Langevin equation. Due to the non-Markovian character of the underlying dynamics these equations are integro-differential equations, and the noise in the Gaussian approximation is coloured. Following on from the chemical Langevin equation a further reduction leads to the linear-noise approximation. We apply the formalism to a delay variant of the celebrated Brusselator model, and show how it can be used to characterise noise-driven quasi-cycles, as well as noise-triggered spiking. We find surprisingly intricate dependence of the typical frequency of quasi-cycles on the delay period.Comment: 14 pages, 9 figure

    Step Position Distributions and the Pairwise Einstein Model for Steps on Crystal Surfaces

    Full text link
    The Pairwise Einstein Model (PEM) of steps not only justifies the use of the Generalized Wigner Distribution (GWD) for Terrace Width Distributions (TWDs), it also predicts a specific form for the Step Position Distribution (SPD), i.e., the probability density function for the fluctuations of a step about its average position. The predicted form of the SPD is well approximated by a Gaussian with a finite variance. However, the variance of the SPD measured from either real surfaces or Monte Carlo simulations depends on Δy\Delta y, the length of step over which it is calculated, with the measured variance diverging in the limit Δy→∞\Delta y \to \infty. As a result, a length scale LWL_{\rm W} can be defined as the value of Δy\Delta y at which the measured and theoretical SPDs agree. Monte Carlo simulations of the terrace-step-kink model indicate that LW≈14.2ξQL_{\rm W} \approx 14.2 \xi_Q, where ξQ\xi_Q is the correlation length in the direction parallel to the steps, independent of the strength of the step-step repulsion. LWL_{\rm W} can also be understood as the length over which a {\em single} terrace must be sampled for the TWD to bear a "reasonable" resemblence to the GWD.Comment: 4 pages, 3 figure

    Restrictions of generalized Verma modules to symmetric pairs

    Full text link
    We initiate a new line of investigation on branching problems for generalized Verma modules with respect to complex reductive symmetric pairs (g,k). Here we note that Verma modules of g may not contain any simple module when restricted to a reductive subalgebra k in general. In this article, using the geometry of K_C orbits on the generalized flag variety G_C/P_C, we give a necessary and sufficient condition on the triple (g,k, p) such that the restriction X|_k always contains simple k-modules for any g-module XX lying in the parabolic BGG category O^p attached to a parabolic subalgebra p of g. Formulas are derived for the Gelfand-Kirillov dimension of any simple k-module occurring in a simple generalized Verma module of g. We then prove that the restriction X|_k is multiplicity-free for any generic g-module X \in O if and only if (g,k) is isomorphic to a direct sum of (A_n,A_{n-1}), (B_n,D_n), or (D_{n+1},B_n). We also see that the restriction X|_k is multiplicity-free for any symmetric pair (g, k) and any parabolic subalgebra p with abelian nilradical and for any generic g-module X \in O^p. Explicit branching laws are also presented.Comment: 31 pages, To appear in Transformation Group
    • …
    corecore