10 research outputs found

    Cropping Practices and Effects on Soil Nutrient Adequacy Levels and Cassava Yield of Smallholder Farmers in Northern Zambia

    Get PDF
    Cassava is a staple food and a major source of income for many smallholder farmers. However, its yields are less than 6 t ha-1 compared to a potential yield of 20-25 t ha-1 in Zambia. Understanding cropping practices and constraints in cassava production systems is imperative for sustainable intensification. Therefore, a survey of 40 households each with three fields of cassava at 12, 24, and 36 months after planting (MAP) was conducted. Analyzed soil data, leaf area index (LAI), intercepted photosynthetically active radiation, and management practices from 120 fields were collected and subjected to descriptive statistics. To explain yield differences within the same cassava growth stage group, the data were grouped into low- and high-yield categories using the median, before applying a nonparametric test for one independent sample. Stepwise regressions were performed on each growth stage and the whole dataset to determine factors affecting tuber yield. Cassava intercropping and monocropping systems were the main cropping systems for the 12 and 24-36 MAP, respectively. Cassava yields declined by 209 and 633 kg ha-1 at 12 and 36 MAP due to soil nutrient depletion for each year of cultivation until field abandonment at 8-9 years. Fresh cassava yields ranged from 3.51-8.51, 13.52-25.84, and 16.92-30.98 t ha-1 at 12, 24, and 36 MAP, respectively. For every one unit increment in exchangeable K (cmol (+)/kg soil), cassava yield increased by 435, 268, and 406 kg ha-1 at 12, 24, and 36 MAP, respectively. One unit increment of magnesium (cmol (+)/kg soil) gave the highest yield increase of 525 kg ha-1 at 24 MAP. The low levels of soil organic carbon explained the deficient nitrogen in cassava fields, which limits the LAI growth and consequently reduced intercepted radiation and low yields. The effect of exchangeable K on growth was limited by the moderate availability of Mg and low N, thus the need for balanced fertilizer regimes. © 2021 Peter Kaluba et al

    Physiological and Morphological Responses of Cassava Genotypes to Fertilization Regimes in Chromi-Haplic Acrisols Soils

    Get PDF
    The objective of this study was to evaluate the performances of three cassava genotypes on yield, physiology and morphological traits under different fertilization regimes. A field experiment was conducted in a split-plot design for two consecutive seasons in the Mansa district of the Luapula Province of Northern Zambia in the highly weathered Chromi-haplic Acrisol soils. Four fertilization regimes, control-M3, lime-M1, NPK fertilizer-M4 and NPK fertilizer + lime-M2 were the main plots, while three varieties (Mweru-V1, Bangweulu-V2 and Katobamputa (local)-V3) were subplots. Periodic measurements of leaf area index, light interception, yield and yield components from 75 days after planting (DAP) up to 410 DAP and daily weather measurements of data were recorded. Fertilization significantly increased the radiation use efficiency (RUE) and light extinction coefficient (K) in two seasons compared to the control. Significant fertilization regimes and varietal effects were observed for seasonal LAI, stem yield, root yield, biomass, harvest index (HI), tuber number, root diameter, plant height and SPAD (chlorophyll index). A significant year’s effects on root yield, yield components and physiological performances were observed while significant fertilization × variety interaction was observed on seasonal LAI, tuber number, root diameter, plant height and SPAD. Significant fertilization × year interaction effects were observed on root yield, yield components and physiological performances. Variety × year interaction was significant for seasonal LAI, stem yield, harvest index and plant height and no three-way interactions were observed on all the traits. NPK fertilizer + lime and NPK fertilizer treatments may be adopted to increase the response of cassava varietal yield, physiology and morphological traits in low soil nutrient conditions under high rain-fed conditions

    Influence of Soil Fertility Management on Nitrogen Mineralization, Urease Activity and Maize Yield

    Get PDF
    For studying the effect of soil fertility management practices on N mineralization, urease activity and maize yield, replicated field trials were established in 2015 at Misamfu and Msekera agricultural research stations (ARS) representing two geo-climatic regions of Zambia. The soil at Msekera ARS is a sandy clay loam (SCL) from a Paleustult, while that at Misamfu is a loamy sand (LS) from a Kandiustult. The field trials had three categories of treatments namely legumes, traditional and conventional. The legumes group consisted of researcher-recommended legume-cereal intercrop systems of maize with Cajanus cajan, Crotalaria juncea and Tephrosia vogelii in combination with compound D (10% N, 20% P2O5, 10% K2O) and urea (46% N) at the recommended rate (200 kg ha-1) and half of the recommended rate (100 kg ha-1). Composted cattle manure and Fundikila, a special plant biomass management technique, were the inputs under the traditional category. The conventional category consisted of a treatment to which only chemical fertilizer was applied. Urease activity was determined in surface soil samples (0-20 cm) collected from the field trials after 3 years. For N mineralization, a laboratory incubation study was conducted over 13 weeks. For the laboratory incubation, an additional treatment to which no input was applied was included as control. Application of organic inputs significantly increased the potentially mineralizable N (No) by 127% to 256% on the LS and by 51% to 131% on the SCL in comparison to the control. Similarly, the cumulative N mineralized (Ncum) was twice or thrice higher where organic inputs had been applied in comparison to the control. The No followed the order traditional > legumes > conventional > control, while the mineralization rate constant (k) followed the order legumes > conventional > traditional > control on both soils. The rate of N mineralization was significantly higher on the LS than the SCL. Higher rates of chemical fertilizer resulted in high Ncum and higher maize yield. Maize yield was significantly and positively correlated to Ncum, but inversely correlated to the amount of applied N that was mineralized (%Nmin). Urease activity was stimulated by application of organic inputs and suppressed by higher rates of chemical fertilizers. The type of organic inputs; the rate of chemical fertilizers; and soil texture are factors influencing N mineralization and maize yield. Urease activity was largely influenced by the rate of chemical fertilizer, but not the type of organic inputs or soil texture

    Performance of linear mixed models and random forests for spatial prediction of soil pH

    No full text
    Digital soil maps describe the spatial variation of soil and provide important information on spatial variation of soil properties which provides policy makers with a synoptic view of the state of the soil. This paper presents a study to tackle the task of how to map the spatial variation of soil pH across Zambia. This was part of a project to assess suitability for rice production across the country. Legacy data on the target variable were available along with additional exhaustive environmental covariates as potential predictor variables. We had the option of undertaking spatial prediction by geostatistical or machine learning methods. We set out to compare the approaches from the selection of predictor variables through to model validation, and to test the predictors on a set of validation observations. We also addressed the problem of how to robustly validate models from legacy data when these have, as is often the case, a strongly clustered spatial distribution. The validation statistics results showed that the empirical best linear unbiased predictor (EBLUP) with the only fixed effect a constant mean (ordinary kriging) performed better than the other methods. Random forests had the largest model-based estimates of the expected squared errors. We also noticed that the random forest algorithm was prone to select as “important” spatially correlated random variables which we had simulated

    Selected Chemical Properties, Microbial Activity and Biomass of Soils Amended with Aqueous Neem Leaf Extract

    No full text
    With declining fertility levels of soils and the high cost of agricultural inputs, such as commercial fertilizers and pesticides, the use of organic inputs has increased in Zambia. While neem products have been shown to improve soil fertility status, several negative effects on soil organisms have also been cited. The negative effects have been attributed to several secondary metabolites produced by the neem plant. In Zambia, neem leaf extract is applied by small scale farmers to enhance soil fertility and promote crop productivity. This study reports the suitability of aqueous neem leaf extract as a soil amendment and its effect on soil microbial biomass and activity in local soils. Neem leaves were characterized before being used to prepare aqueous neem extract in the concentrations 2, 5, 10, 15, and 20 % in water. The extract was characterized for selected mineral components and then applied to 5 kg of soil on a weekly basis for five weeks. Each week, for ten weeks, the effect of the extract on microbial biomass and activity were determined using the Chloroform Fumigation and Incubation (CFI) and soil respiration methods, respectively. Selected soil chemical characteristics were determined at the start and end of the experiment. Results indicated that the chemical composition of the neem leaves was comparable to that observed by others and was similar to that of other tree leaves used for preparing leaf extracts. Amending soils with neem did not significantly improve selected chemical properties but only marginally increased soil calcium levels. Neem leaf extract enhanced soil microbial activity up to 10 %, but showed inhibitory effects at 15 and 20 % concentrations. Microbial biomass was also depressed by neem leaf extract at 20 %. The reduction in both microbial activity and biomass was possibly due to the negative effects of the neem secondary metabolites in the leaf extract at these higher concentrations. Although the application of neem leaf extract at 10 % percent or higher can inhibit both microbial biomass and activity, some mineralizable components in the extracts can support growth and activity of some microorganisms in the soil. Based on these results, the application of neem leaf extract at 10 % percent or higher can inhibit both microbial biomass and activity and marginally improve soil Ca levels. The use of neem leaf extract can therefore be of benefit to soils with critically low levels of Ca

    Physiological and Morphological Responses of Cassava Genotypes to Fertilization Regimes in Chromi-Haplic Acrisols Soils

    No full text
    The objective of this study was to evaluate the performances of three cassava genotypes on yield, physiology and morphological traits under different fertilization regimes. A field experiment was conducted in a split-plot design for two consecutive seasons in the Mansa district of the Luapula Province of Northern Zambia in the highly weathered Chromi-haplic Acrisol soils. Four fertilization regimes, control-M3, lime-M1, NPK fertilizer-M4 and NPK fertilizer + lime-M2 were the main plots, while three varieties (Mweru-V1, Bangweulu-V2 and Katobamputa (local)-V3) were subplots. Periodic measurements of leaf area index, light interception, yield and yield components from 75 days after planting (DAP) up to 410 DAP and daily weather measurements of data were recorded. Fertilization significantly increased the radiation use efficiency (RUE) and light extinction coefficient (K) in two seasons compared to the control. Significant fertilization regimes and varietal effects were observed for seasonal LAI, stem yield, root yield, biomass, harvest index (HI), tuber number, root diameter, plant height and SPAD (chlorophyll index). A significant year’s effects on root yield, yield components and physiological performances were observed while significant fertilization × variety interaction was observed on seasonal LAI, tuber number, root diameter, plant height and SPAD. Significant fertilization × year interaction effects were observed on root yield, yield components and physiological performances. Variety × year interaction was significant for seasonal LAI, stem yield, harvest index and plant height and no three-way interactions were observed on all the traits. NPK fertilizer + lime and NPK fertilizer treatments may be adopted to increase the response of cassava varietal yield, physiology and morphological traits in low soil nutrient conditions under high rain-fed conditions

    Lead, Zinc and Cadmium Accumulation, and Associated Health Risks, in Maize Grown near the Kabwe Mine in Zambia in Response to Organic and Inorganic Soil Amendments

    No full text
    Health risks due to heavy metal (HM) contamination is of global concern. Despite concerns of high levels of HMs in soils near Kabwe mine in Zambia, edible crop production is common, posing potential health risks. This study assessed the potential of chicken manure (CM), triple superphosphate (TSP) and a blended fertilizer (BF; consisting of Nitrogen, Phosphorous and Potassium (NPK) fertilizer and composted chicken manure) to reduce lead (Pb), zinc (Zn) and cadmium (Cd) in soils and their accumulation in maize grown near the Kabwe mine. Maize was grown to maturity and its HM concentrations and associated health risk indices were calculated. All soil amendments decreased bioavailable soil Pb concentrations by 29-36%, but only CM decreased Zn, while the amendments increased or had no effect on Cd concentrations compared to the control. The amendments reduced Pb (>25%) and Zn concentrations (>18%) in the maize stover and grain. However, Cd concentrations in maize grain increased in the BF and TSP treatments. Bioaccumulation factors showed that Cd had the highest mobility from the soil into maize stover and grain, indicating the need for greater attention on Cd in Kabwe despite its apparently lower soil concentration compared to Pb and Zn. The hazard quotients for Pb and Cd were much greater than one, indicating a high risk of possible exposure to toxic levels by people consuming maize grain grown in this area. This study demonstrated the significant potential of manure and phosphate-based amendments to reduce Pb and Zn, and to some extent Cd, uptake in maize grain and consequently reduce associated health risks

    Review: mine tailings in an African tropical environment—mechanisms for the bioavailability of heavy metals in soils

    No full text
    Heavy metals are of environmental significance due to their effect on human health and the ecosystem. One of the major exposure pathways of Heavy metals for humans is through food crops. It is postulated in the literature that when crops are grown in soils which have excessive concentrations of heavy metals, they may absorb elevated levels of these elements thereby endangering consumers. However, due to land scarcity, especially in urban areas of Africa, potentially contaminated land around industrial dumps such as tailings is cultivated with food crops. The lack of regulation for land-usage on or near to mine tailings has not helped this situation. Moreover, most countries in tropical Africa have not defined guideline values for heavy metals in soils for various land uses, and even where such limits exist, they are based on total soil concentrations. However, the risk of uptake of heavy metals by crops or any soil organisms is determined by the bioavailable portion and not the total soil concentration. Therefore, defining bioavailable levels of heavy metals becomes very important in HM risk assessment, but methods used must be specific for particular soil types depending on the dominant sorption phases. Geochemical speciation modelling has proved to be a valuable tool in risk assessment of heavy metal-contaminated soils. Among the notable ones is WHAM (Windermere Humic Aqueous Model). But just like most other geochemical models, it was developed and adapted on temperate soils, and because major controlling variables in soils such as SOM, temperature, redox potential and mineralogy differ between temperate and tropical soils, its predictions on tropical soils may be poor. Validation and adaptation of such models for tropical soils are thus imperative before such they can be used. The latest versions (VI and VII) of WHAM are among the few that consider binding to all major binding phases. WHAM VI and VII are assemblages of three sub-models which describe binding to organic matter, (hydr)oxides of Fe, Al and Mn and clays. They predict free ion concentration, total dissolved ion concentration and organic and inorganic metal ion complexes, in soils, which are all important components for bioavailability and leaching to groundwater ways. Both WHAM VI and VII have been applied in a good number of soils studies with reported promising results. However, all these studies have been on temperate soils and have not been tried on any typical tropical soils. Nonetheless, since WHAM VII considers binding to all major binding phases, including those which are dominant in tropical soils, it would be a valuable tool in risk assessment of heavy metals in tropical soils. A discussion of the contamination of soils with heavy metals, their subsequent bioavailability to crops that are grown in these soils and the methods used to determine various bioavailable phases of heavy metals are presented in this review, with an emphasis on prospective modelling techniques for tropical soils

    Crop uptake of heavy metals in response to the environment and agronomic practices on land near mine tailings in the Zambian Copperbelt Province

    No full text
    A field experiment was undertaken on farmers’ fields adjacent to a large mine tailings dam in the Zambian mining town of Kitwe. Experimental plots were located close to the tailings (≀ 200 m) or further away (300–400 m) within the demarcated land farmed by the same community. This study evaluated the uptake of Cd, Cu, Ni, Pb and Zn by pumpkin leaves and maize grown in soil amended with lime and manure applied at agronomic rates, and the subsequent risk of dietary exposure to the local community, typical of many similar situations across the Zambian Copperbelt. Treatments, combinations of lime and manure (present or absent), were applied to subplots selected independently and randomly within each main plot, which represented variable geochemistry across this study site as a result of windblown/rain-driven dust from the tailings. Total elemental concentrations in crops were determined by ICP-MS following microwave-assisted acid digestion. Concentrations of Cu and Pb in pumpkin leaves were above the prescribed FAO/WHO safe limits by 60–205% and by 33–133%, respectively, while all five metals were below the limit for maize grain. Concentration of metals in maize grain was not affected by the amendments. However, lime at typical agronomic application rates significantly reduced concentrations of Cd, Cu, Pb and Zn in the pumpkin leaves by 40%, 33%, 19% and 10%, respectively, and for manure Cd reduced by 16%, while Zn increased by 35%. The uptake of metals by crops in locations further from the tailings was greater than closer to the tailings because of greater retention of metals in the soil at higher soil pH closer to the tailings. Crops in season 2 had greater concentrations of Cu, Ni, Pb and Zn than in season 1 due to diminished lime applied only in season 1, in line with common applications on a biannual basis. Maize as the staple crop is safe to grow in this area while pumpkin leaves as a readily available commonly consumed leafy vegetable may present a hazard due to accumulation of Cu and Pb above recommended safe limits
    corecore