186 research outputs found

    Transport and energy in India. Energy used by Indian transport systems and consequent emissions: the need for quantitative analyses (Well-to-Wheel, Lifecycle)

    Get PDF
    The purpose of this work is, at first, a general overview on the state-of-art of the transportation system in India outlining the related energy consumption, for the different transport modes, with consequent estimated emissions. These elements are essential for the preparation of a high-level strategic transport planning on the whole energy issue, to help India in the choices of most suitable transportation systems, according to the well-to-wheel analysis (WTW). Pursuing a WTW global index for India that takes into account both the energy and environmental aspects on a uniform basis is an important aim: it allows the best choices to be made as well as enabling the comparison between some of the most important powertrain and fuel options on the Indian market, the results are discussed from three different points of view: energy, environmental and economic impac

    Development of a Photosynthetic Microbial Electrochemical Cell (PMEC) Reactor Coupled with Dark Fermentation of Organic Wastes: Medium Term Perspectives

    Get PDF
    In this article the concept, the materials and the exploitation potential of a photosynthetic microbial electrochemical cell for the production of hydrogen driven by solar power are investigated. In a photosynthetic microbial electrochemical cell, which is based on photosynthetic microorganisms confined to an anode and heterotrophic bacteria confined to a cathode, water is split by bacteria hosted in the anode bioactive film. The generated electrons are conveyed through external "bio-appendages" developed by the bacteria to transparent nano-pillars made of indium tin oxide (ITO), Fluorine-doped tin oxide (FTO) or other conducting materials, and then transferred to the cathode. On the other hand, the generated protons diffuse to the cathode via a polymer electrolyte membrane, where they are reduced by the electrons by heterotrophic bacteria growing attached to a similar pillared structure as that envisaged for the anode and supplemented with a specific low cost substrate (e.g., organic waste, anaerobic digestion outlet). The generated oxygen is released to the atmosphere or stored, while the produced pure hydrogen leaves the electrode through the porous layers. In addition, the integration of the photosynthetic microbial electrochemical cell system with dark fermentation as acidogenic step of anaerobic digester, which is able to produce additional H2, and the use of microbial fuel cell, feed with the residues of dark fermentation (mainly volatile fatty acids), to produce the necessary extra-bias for the photosynthetic microbial electrochemical cell is here analyzed to reveal the potential benefits to this novel integrated technology

    A review on the catalytic combustion of soot in Diesel particulate filters for automotive applications: From powder catalysts to structured reactors

    Get PDF
    Abstract The current soot oxidation catalyst scenario has been reviewed, the main factors that affect the activity of powder catalysts have been highlighted and kinetic soot oxidation models have been examined. A critical review of recent advances in modelling approaches has also been presented in this work. The multiscale nature of DPFs lends itself to a hierarchical organization of models, over various orders of magnitude. Different observation scales (e.g., wall, channel, entire filter) have often been addressed with separate modelling approaches that are rarely connected to one another, mainly because of computational difficulties. Nevertheless, DPFs exhibit an intrinsic multi-scale complexity that is reflected by a trade-off between fine and large-scale phenomena. Consequently, the catalytic behavior of DPFs usually results in a non-linear combination of multi-scale phenomena

    Challenges and opportunities of process modelling renewable advanced fuels

    Get PDF
    The Paris COP21 held on December 2015 represented a step forward global GHG emission reduction: this led to intensify research efforts in renewables, including biofuels and bioliquids. However, addressing sustainable biofuels and bioliquid routes and value chains which can limit or reverse the ILUC (indirect land-use change effect) is of paramount importance. Given this background condition, the present study targets the analysis and modelling a new integrated biomass conversion pathway to produce renewable advanced fuels, enabling the issue of indirect land-use change (ILUC) of biofuels to be tackled. The bioenergy chain under investigation integrates the decentralized production of biogas through anaerobic digestion and its upgrading to biomethane, followed by a centralized conversion to liquid transport fuels, involving methane reforming into syngas, Fischer–Tropsch (FT) synthesis, and methanol synthesis. The methodology adopted in this work stem from extensive literature review of suitable bio/thermo-chemical conversion technologies and their process modelling using a commercial flow-diagram simulation software is carried out. The major significance of the study is to understand the different modelling approaches, to allow the estimation of process yields and mass/energy balances: in such a way, this work aims at providing guidance to process modellers targeting qualitative and quantitative assessments of biomass to biofuels process routes. Beyond FT products, additional process pathways have been also explored, such as MeOH synthesis from captured CO2 and direct methane to methanol synthesis (DMTM). The analysis demonstrated that it is possible to model such innovative integrated processes through the selected simulation tool. However, research is still needed as regards the DMTM process, where studies about modelling this route through the same tool have not been yet identified in the literature

    Catalysis in Diesel engine NOx aftertreatment: a review

    Get PDF
    AbstractThe catalytic reduction of nitrogen oxides (NOx) under lean-burn conditions represents an important target in catalysis research. The most relevant catalytic NOx abatement systems for Diesel engine vehicles are summarized in this short review, with focus on the main catalytic aspects and materials. Five aftertreatment technologies for Diesel NOx are reviewed: (i) direct catalytic decomposition; (ii) catalytic reduction; (iii) NOx traps; (iv) plasma-assisted abatement; and (v) NOx reduction combined with soot combustion. The different factors that can affect catalytic activity are addressed for each approach (e.g. promoting or poisoning elements, operating conditions, etc.). In the field of catalytic strategies, the simultaneous removal of soot and NOx using multifunctional catalysts, is at present one of the most interesting challenges for the automotive industry

    Process intensification strategies for lignin valorization

    Get PDF
    Nowadays, the increasing concern about the declining fossil fuel reserves and the environmental impact derived from their use has put considerable interest in lignocellulose exploitation as a renewable source of biofuels and biomaterials, according to the biorefinery concept.Several processes and technologies have been extensively studied in order to optimize biomass treatments aiming to enhance the recovery of its main products: cellulose, hemicelluloses and lignin. Lignin is, in fact, considered a valid substitute to petroleum as a source of aromatics, thanks to its abundance in nature. However, its complex and highly resistant structure limits its further applications, therefore, lignin upgrading is considered extremely challenging: various processes have been developed in recent years, but their feasibility at industrial scale still represents a bottleneck.Recently, process intensification has gained considerable attention in the design of sustainable procedures for lignin valorization. In particular, non-conventional technologies such as Ball milling, Ultrasounds (US) and Microwaves (MW) have recently shown promising results in biomass exploitation, thanks to their ability in generating specific high-energy microenvironments which could enhance process efficiency: mechanochemical and US activation have been mostly applied to biomass pre-treatment, in order to separate its components and enhance lignin extraction yield, while MW have been exploited as a means for lignin depolymerization, achieving higher yields of aromatics in milder reaction conditions. However further efforts should be done to improve profitability through new processes, aiming to reduce the cost associated to bio-derived products.In the present review, recent approaches to lignin valorization are discussed, focusing on new alternative methodologies for process intensification, besides their challenges and feasibility at industrial scale

    Nucleation and growth kinetics of CaCO3 crystals in the presence of foreign monovalent ions

    Get PDF
    The aim of this work is to study the effect of the presence of different monovalent ions (Na+, NH4+ and K+) on the nucleation and growth rates of CaCO3 precipitation. There is currently great interest in the precipitation of CaCO3 particles reusing CO2 rich flue gases and calcium-rich wastes, which implies the presence of foreign ions that can affect the crystallization process. Unseeded and seeded tests were carried out in a batch system to estimate the nucleation and growth kinetics, respectively. Tests with Na2CO3 and CaCl2 as precursors led to the classical calcite crystallization mechanism via vaterite formation at high supersaturations. On the other hand, the use of (NH4)2CO3 entailed lower pH and the presence of NH4+, which stabilized the vaterite and avoided its transformation into stable calcite crystals. Thus, faster nucleation kinetics by using Na2CO3 were obtained. To estimate the growth rate, tests with two initial seed loadings and types (micro and nano seed) were performed. The growth rate increased with the crystal size and decreased with the magma density. The results indicate that the ion effect on the growth rate seems to be related to the ionic radius of the foreign ion

    Process Modeling of an Innovative Power to LNG Demonstration Plant

    Get PDF
    The continuous increase in electricity production from renewable energy sources (RESs) introduces the intrinsic fluctuating characteristic of RESs in the electric power grid, causing nontrivial grid management issues (e.g., grid congestion). In this work, an innovative power to liquefied methane concept was developed, and process simulations for a 200 kWel demonstration plant were carried out. The proposed concept is based on water electrolysis to produce hydrogen, CO2 capture from air using solid adsorption materials, catalytic CO2 methanation, gas separation, and a single mixed refrigerant (SMR) liquefaction process. The gas separation unit produces an exhaust stream, rich in not only hydrogen and carbon dioxide but also methane, that is recycled to the methanation unit inlet. A thermodynamic analysis excluded the possibility of carbon deposition formation in the methanation reactor due to methane recirculation. The gas separation system was designed using a combination of temperature swing adsorption t..

    Optimization of CaCO3 synthesis through the carbonation route in a packed bed reactor

    Get PDF
    This article presents an investigation on the recovery of CO2 from the combustion gases of the cement industry through a carbonation route in order to obtain Calcium Carbonate Nanoparticles (CCnP), which could find application as either polymer or cement fillers. Two different experimental setups, a Continuously Stirred Bubbling Reactor (CSBR) and a Packed Bed Reactor (PBR), were studied in order to improve the final product and enhance the process yield. The influence of the experimental parameters on the particle size and morphology was tested for both reactors. The process was intensified by employing the PBR, where cubic calcite particles smaller than 300 nm were synthesized and higher CO2 conversions were obtained with respect to the CSBR performance
    • …
    corecore