29 research outputs found
A Peek Under the Hood: Why Lawmakers Should Strengthen the Current DMCA Exemption for Security and Safety Research into Car Software
In the last five years, society has witnessed advancements in automobile technology that Henry Ford himself could not have dreamed. Vehicle software now allows cars to drive themselves; indeed, as of December 2017, close to four dozen vehicle manufacturers have received permits from the California Department of Motor Vehicles for autonomous testing. Many of the advancements in automobile technology involve copyright law, the primary body of law that protects computer source code. Essentially, each line of vehicle source code is protected the same way a film script is protected. Just as camera directions in the script are hidden from movie-goers, the source code underlying vehicle software is encrypted and given a second layer of protection through the Digital Millennium Copyright Act.
This article explores alternatives to the DMCA Triennial Review Process with a focus on the Class 22 Exemption for vehicle software research. By weighing corporate interests against those of the public, I suggest a refinement of Section 1201âs language that will inevitably benefit the public at large. Part one of this article explores two recent controversial case studies on vehicle source code. These case studies underscore the importance of creating an exemption for vehicle software research. Part two provides some background on the DMCA. Part three examines the Triennial Review Process, provides criticism of that process, and examines a case study on the Cell Phone Unlocking Exemption. Part four focuses on the Class 22 Vehicle Software-Security and Safety Research Exemption, and offers a proposal to strengthen this exemption
Klebsiella pneumoniae carbapenamases in Escherichia coli isolated from humans and livestock in rural South-Western Uganda
Funding: This work was supported by; The "Holistic Approach to Unravel Antibacterial Resistance in East Africaâ project which was a 3-year Global Context Consortia Award (MR/S004785/1) funded by the National Institute for Health Research, Medical Research Council and the Department of Health and Social Care, UK.Background The accumulation of resistance genes in Escherichia coli (E. coli) strains imposes limitations in the therapeutic options available for the treatment of infections caused by E.coli. Production of Klebsiella pneumoniae carbapenemase (KPC) by E. coli renders it resistant to broad-spectrum β-lactam antibiotics. Globally there is existing evidence of spread of carbapenem-resistant E. coli in both humans and livestock driven by acquisition of the several other carbapenemase genes. Overall, there is little information regarding the extent of KPC gene distribution in E. coli. We set out to determine the prevalence, and evaluate the phenotypic and genotypic patterns of KPC in E. coli isolated from humans and their livestock in rural south western Uganda. Methods A laboratory-based, descriptive cross-sectional study was conducted involving 96 human and 96 livestock isolates collected from agro-pastoralist communities in Mbarara district in south western Uganda. Phenotypic and molecular methods (PCR) were used for presence and identification of KPC genes in the E. coli isolates. A chi-square test of independence was used to evaluate the differences in resistant patterns between carbapenems and isolates. Results The overall prevalence of carbapenem resistance by disk diffusion susceptibility testing (DST) for both humans and livestock isolates were 41.7% (80/192). DST-based resistance was identical in both human and livestock isolates (41.7%). The prevalence of carbapenem resistance based on Modified Hodge Test (MHT) was 5% (2/40) and 10% (4/40) for humans and livestock isolates respectively. Both human and livestock isolates, 48.7% (95/192) had the KPC gene, higher than phenotypic expression; 41.7% (80/192). blaKPC gene prevalence was overall similar in human isolates (51%; 49/96) vs livestock isolates (47.9%; 46/96). Approximately, 19% (15/80) of the isolates were phenotypically resistant to carbapenems and over 70% (79/112) of the phenotypically sensitive strains harbored the blaKPC gene. Conclusion Our results suggest that both human and livestock isolates of E. coli in our setting carry the blaKPC gene with a high percentage of strains not actively expressing the blaKPC gene. The finding of fewer isolates carrying the KPC gene than those phenotypically resistant to carbapenems suggests that other mechanisms are playing a role in this phenomenon, calling for further researcher into this phenomenon.Publisher PDFPeer reviewe
Pan-resistome characterization of uropathogenic Escherichia coli and Klebsiella pneumoniae strains circulating in Uganda and Kenya, isolated from 2017-2018
Funding: The Holistic Approach to Unravel Antibacterial Resistance in East Africa is a 3-year Global Context Consortia Award (MR/S004785/1) funded by the National Institute for Health Research, Medical Research Council and the Department of Health and Social Care. The award is also part of the EDCTP2 program supported by the European Union.Urinary tract infection (UTI) develops after a pathogen adheres to the inner lining of the urinary tract. Cases of UTIs are predominantly caused by several Gram-negative bacteria and account for high morbidity in the clinical and community settings. Of greater concern are the strains carrying antimicrobial resistance (AMR)-conferring genes. The gravity of a UTI is also determined by a spectrum of other virulence factors. This study represents a pilot project to investigate the burden of AMR among uropathogens in East Africa. We examined bacterial samples isolated in 2017â2018 from in- and out-patients in Kenya (KY) and Uganda (UG) that presented with clinical symptoms of UTI. We reconstructed the evolutionary history of the strains, investigated their population structure, and performed comparative analysis their pangenome contents. We found 55 Escherichia coli and 19 Klebsiella pneumoniae strains confirmed uropathogenic following screening for the prevalence of UTI virulence genes including fimH, iutA, feoA/B/C, mrkD, and foc. We identified 18 different sequence types in E. coli population while all K. pneumoniae strains belong to ST11. The most prevalent E. coli sequence types were ST131 (26%), ST335/1193 (10%), and ST10 (6%). Diverse plasmid types were observed in both collections such as Incompatibility (IncF/IncH/IncQ1/IncX4) and Col groups. Pangenome analysis of each set revealed a total of 2862 and 3464 genes comprised the core genome of E. coli and K. pneumoniae population, respectively. Among these are acquired AMR determinants including fluoroquinolone resistance-conferring genes aac(3)-Ib-cr and other significant genes: aad, tet, sul1, sul2, and cat, which are associated with aminoglycoside, tetracycline, sulfonamide, and chloramphenicol resistance, respectively. Accessory genomes of both species collections were detected several β-lactamase genes, blaCTX-M, blaTEM and blaOXA, or blaNDM. Overall, 93% are multi-drug resistant in the E. coli collection while 100% of the K. pneumoniae strains contained genes that are associated with resistance to three or more antibiotic classes. Our findings illustrate the abundant acquired resistome and virulome repertoire in uropathogenic E. coli and K. pneumoniae, which are mainly disseminated via clonal and horizontal transfer, circulating in the East African region. We further demonstrate here that routine genomic surveillance is necessary for high-resolution bacterial epidemiology of these important AMR pathogens.Publisher PDFPeer reviewe
Evaluation of the diagnostic performance of the urine dipstick test for the detection of urinary tract infections in patients treated in Kenyan hospitals
This work is a subset of the large HATUA (Holistic approach to unravel antibacterial resistance) consortium funded by the UK Medical Research Council (MR/S004785/1).Introduction. Culture is the gold-standard diagnosis for urinary tract infections (UTIs). However, most hospitals in low-resource countries lack adequately equipped laboratories and relevant expertise to perform culture and, therefore, rely heavily on dipstick tests for UTI diagnosis. Research gap. In many Kenyan hospitals, routine evaluations are rarely done to assess the accuracy of popular screening tests such as the dipstick test. As such, there is a substantial risk of misdiagnosis emanating from inaccuracy in proxy screening tests. This may result in misuse, under-use or over-use of antimicrobials. Aim. The present study aimed to assess the accuracy of the urine dipstick test as a proxy for the diagnosis of UTIs in selected Kenyan hospitals. Methods. A hospital-based cross-sectional method was used. The utility of dipstick in the diagnosis of UTIs was assessed using midstream urine against culture as the gold standard. Results. The dipstick test predicted 1416 positive UTIs, but only 1027 were confirmed positive by culture, translating to a prevalence of 54.1 %. The sensitivity of the dipstick test was better when leucocytes and nitrite tests were combined (63.1 %) than when the two tests were separate (62.6 and 50.7 %, respectively). Similarly, the two tests combined had a better positive predictive value (87.0 %) than either test alone. The nitrite test had the best specificity (89.8 %) and negative predictive value (97.4 %) than leucocytes esterase (L.E) or both tests combined. In addition, sensitivity in samples from inpatients (69.2 %) was higher than from outpatients (62.7 %). Furthermore, the dipstick test had a better sensitivity and positive predictive value among female (66.0 and 88.6 %) than male patients (44.3 and 73.9 %). Among the various patient age groups, the dipstick testâs sensitivity and positive predictive value were exceptionally high in patients âĽ75 years old (87.5 and 93.3 %). Conclusion. Discrepancies in prevalence from the urine dipstick test and culture, the gold standard, indicate dipstick test inadequacy for accurate UTI diagnosis. The finding also demonstrates the need for urine culture for accurate UTI diagnosis. However, considering it is not always possible to perform a culture, especially in low-resource settings, future studies are needed to combine specific UTI symptoms and dipstick results to assess possible increases in the testâs sensitivity. There is also a need to develop readily available and affordable algorithms that can detect UTIs where culture is not available.Publisher PDFPeer reviewe
Treatment seeking and antibiotic use for urinary tract infection symptoms in the time of COVID-19 in Tanzania and Uganda
Funding: CARE: COVID-19 and Antimicrobial Resistance in East Africa â impact and response is a Global Effort on COVID-19 (GECO) Health Research Award (MR/V036157/1) funded by UK Research and Innovation (Medical Research Council) and the Department of Health and Social Care (National Institute for Health Research).Background There is still little empirical evidence on how the outbreak of coronavirus disease 2019 (COVID-19) and associated regulations may have disrupted care-seeking for non-COVID-19 conditions or affected antibiotic behaviours in low- and middle-income countries (LMICs). We aimed to investigate the differences in treatment-seeking behaviours and antibiotic use for urinary tract infection (UTI)-like symptoms before and during the pandemic at recruitment sites in two East African countries with different COVID-19 control policies: Mbarara, Uganda and Mwanza, Tanzania. Methods In this repeated cross-sectional study, we used data from outpatients (pregnant adolescents aged >14 and adults aged >18) with UTI-like symptoms who visited health facilities in Mwanza, Tanzania and Mbarara, Uganda. We assessed the prevalence of self-reported behaviours (delays in care-seeking, providers visited, antibiotics taken) at three different time points, labelled as âpre-COVID-19 phaseâ (February 2019 to February 2020), âCOVID-19 phase 1â (March 2020 to April 2020), and âCOVID-19 phase 2â (July 2021 to February 2022). Results In both study sites, delays in care-seeking were less common during the pandemic than they were in the pre-COVID phase. Patients in Mwanza, Tanzania had shorter care-seeking pathways during the pandemic compared to before it, but this difference was not observed in Mbarara, Uganda. Health centres were the dominant sources of antibiotics in both settings. Over time, reported antibiotic use for UTI-like symptoms became more common in both settings. During the COVID-19 phases, there was a significant increase in self-reported use of antibiotics like metronidazole (<30% in the pre-COVID-19 phase to 40% in COVID phase 2) and doxycycline (30% in the pre-COVID-19 phase to 55% in COVID phase 2) that were not recommended for treating UTI-like symptoms in the National Treatment Guidelines in Mbarara, Uganda. Conclusions There was no clear evidence that patients with UTI-like symptoms attending health care facilities had longer or more complex treatment pathways despite strict government-led interventions related to COVID-19. However, antibiotic use increased over time, including some antibiotics not recommended for treating UTI, which has implications for future antimicrobial resistance.Publisher PDFPeer reviewe
Predominance of multidrug-resistant bacteria causing urinary tract infections among symptomatic patients in East Africa : a call for action
Background In low- and middle-income countries, antibiotics are often prescribed for patients with symptoms of urinary tract infections (UTIs) without microbiological confirmation. Inappropriate antibiotic use can contribute to antimicrobial resistance (AMR) and the selection of MDR bacteria. Data on antibiotic susceptibility of cultured bacteria are important in drafting empirical treatment guidelines and monitoring resistance trends, which can prevent the spread of AMR. In East Africa, antibiotic susceptibility data are sparse. To fill the gap, this study reports common microorganisms and their susceptibility patterns isolated from patients with UTI-like symptoms in Kenya, Tanzania and Uganda. Within each country, patients were recruited from three sites that were sociodemographically distinct and representative of different populations. Methods UTI was defined by the presence of >104â
cfu/mL of one or two uropathogens in mid-stream urine samples. Identification of microorganisms was done using biochemical methods. Antimicrobial susceptibility testing was performed by the KirbyâBauer disc diffusion assay. MDR bacteria were defined as isolates resistant to at least one agent in three or more classes of antimicrobial agents. Results Microbiologically confirmed UTI was observed in 2653 (35.0%) of the 7583 patients studied. The predominant bacteria were Escherichia coli (37.0%), Staphylococcus spp. (26.3%), Klebsiella spp. (5.8%) and Enterococcus spp. (5.5%). E. coli contributed 982 of the isolates, with an MDR proportion of 52.2%. Staphylococcus spp. contributed 697 of the isolates, with an MDR rate of 60.3%. The overall proportion of MDR bacteria (nâ=â1153) was 50.9%. Conclusions MDR bacteria are common causes of UTI in patients attending healthcare centres in East African countries, which emphasizes the need for investment in laboratory culture capacity and diagnostic algorithms to improve accuracy of diagnosis that will lead to appropriate antibiotic use to prevent and control AMR.Peer reviewe
Treatment seeking behaviours, antibiotic use and relationships to multi-drug resistance : a study of urinary tract infection patients in Kenya, Tanzania and Uganda
Antibacterial resistance (ABR) is a major public health threat. An important accelerating factor is treatment-seeking behaviour, including inappropriate antibiotic (AB) use. In many low- and middle-income countries (LMICs) this includes taking ABs with and without prescription sourced from various providers, including health facilities and community drug sellers. However, investigations of complex treatment-seeking, AB use and drug resistance in LMICs are scarce. The Holistic Approach to Unravel Antibacterial Resistance in East Africa (HATUA) Consortium collected questionnaire and microbiological data from adult outpatients with urinary tract infection (UTI)-like symptoms presenting at healthcare facilities in Kenya, Tanzania and Uganda. Using data from 6,388 patients, we analysed patterns of self-reported treatment seeking behaviours (âpatient pathwaysâ) using process mining and single-channel sequence analysis. Among those with microbiologically confirmed UTI (n = 1,946), we used logistic regression to assess the relationship between treatment seeking behaviour, AB use, and the likelihood of having a multi-drug resistant (MDR) UTI. The most common treatment pathway for UTI-like symptoms in this sample involved attending health facilities, rather than other providers like drug sellers. Patients from sites in Tanzania and Uganda, where over 50% of patients had an MDR UTI, were more likely to report treatment failures, and have repeat visits to providers than those from Kenyan sites, where MDR UTI proportions were lower (33%). There was no strong or consistent relationship between individual AB use and likelihood of MDR UTI, after accounting for country context. The results highlight the hurdles East African patients face in accessing effective UTI care. These challenges are exacerbated by high rates of MDR UTI, suggesting a vicious cycle of failed treatment attempts and sustained selection for drug resistance. Whilst individual AB use may contribute to the risk of MDR UTI, our data show that factors related to context are stronger drivers of variations in ABR.Peer reviewe
Pan-resistome characterization of uropathogenic <i>Escherichia coli</i> and <i>Klebsiella pneumoniae</i> strains circulating in Uganda and Kenya, isolated from 2017-2018
Urinary tract infection (UTI) develops after a pathogen adheres to the inner lining of the urinary tract. Cases of UTIs are predominantly caused by several Gram-negative bacteria and account for high morbidity in the clinical and community settings. Of greater concern are the strains carrying antimicrobial resistance (AMR)-conferring genes. The gravity of a UTI is also determined by a spectrum of other virulence factors. This study represents a pilot project to investigate the burden of AMR among uropathogens in East Africa. We examined bacterial samples isolated in 2017â2018 from in- and out-patients in Kenya (KY) and Uganda (UG) that presented with clinical symptoms of UTI. We reconstructed the evolutionary history of the strains, investigated their population structure, and performed comparative analysis their pangenome contents. We found 55 Escherichia coli and 19 Klebsiella pneumoniae strains confirmed uropathogenic following screening for the prevalence of UTI virulence genes including fimH, iutA, feoA/B/C, mrkD, and foc. We identified 18 different sequence types in E. coli population while all K. pneumoniae strains belong to ST11. The most prevalent E. coli sequence types were ST131 (26%), ST335/1193 (10%), and ST10 (6%). Diverse plasmid types were observed in both collections such as Incompatibility (IncF/IncH/IncQ1/IncX4) and Col groups. Pangenome analysis of each set revealed a total of 2862 and 3464 genes comprised the core genome of E. coli and K. pneumoniae population, respectively. Among these are acquired AMR determinants including fluoroquinolone resistance-conferring genes aac(3)-Ib-cr and other significant genes: aad, tet, sul1, sul2, and cat, which are associated with aminoglycoside, tetracycline, sulfonamide, and chloramphenicol resistance, respectively. Accessory genomes of both species collections were detected several β-lactamase genes, blaCTX-M, blaTEM and blaOXA, or blaNDM. Overall, 93% are multi-drug resistant in the E. coli collection while 100% of the K. pneumoniae strains contained genes that are associated with resistance to three or more antibiotic classes. Our findings illustrate the abundant acquired resistome and virulome repertoire in uropathogenic E.coli and K. pneumoniae, which are mainly disseminated via clonal and horizontal transfer, circulating in the East African region. We further demonstrate here that routine genomic surveillance is necessary for high-resolution bacterial epidemiology of these important AMR pathogens