54 research outputs found
Evidence for the Contribution of the Hemozoin Synthesis Pathway of the Murine Plasmodium yoelii to the Resistance to Artemisinin-Related Drugs
Plasmodium falciparum malaria is a major global health problem, causing approximately 780,000 deaths each year. In response to the spreading of P. falciparum drug resistance, WHO recommended in 2001 to use artemisinin derivatives in combination with a partner drug (called ACT) as first-line treatment for uncomplicated falciparum malaria, and most malaria-endemic countries have since changed their treatment policies accordingly. Currently, ACT are often the last treatments that can effectively and rapidly cure P. falciparum infections permitting to significantly decrease the mortality and the morbidity due to malaria. However, alarming signs of emerging resistance to artemisinin derivatives along the Thai-Cambodian border are of major concern. Through long-term in vivo pressures, we have been able to select a murine malaria model resistant to artemisinins. We demonstrated that the resistance of Plasmodium to artemisinin-based compounds depends on alterations of heme metabolism and on a loss of hemozoin formation linked to the down-expression of the recently identified Heme Detoxification Protein (HDP). These artemisinins resistant strains could be able to detoxify the free heme by an alternative catabolism pathway involving glutathione (GSH)-mediation. Finally, we confirmed that artemisinins act also like quinolines against Plasmodium via hemozoin production inhibition. The work proposed here described the mechanism of action of this class of molecules and the resistance to artemisinins of this model. These results should help both to reinforce the artemisinins activity and avoid emergence and spread of endoperoxides resistance by focusing in adequate drug partners design. Such considerations appear crucial in the current context of early artemisinin resistance in Asia
Nrf2, a PPARÎł Alternative Pathway to Promote CD36 Expression on Inflammatory Macrophages: Implication for Malaria
CD36 is the major receptor mediating nonopsonic phagocytosis of Plasmodium falciparum-parasitized erythrocytes by macrophages. Its expression on macrophages is mainly controlled by the nuclear receptor PPARÎł. Here, we demonstrate that inflammatory processes negatively regulate CD36 expression on human and murine macrophages, and hence decrease Plasmodium clearance directly favoring the worsening of malaria infection. This CD36 downregulation in inflammatory conditions is associated with a failure in the expression and activation of PPARÎł. Interestingly, using siRNA mediating knock down of Nrf2 in macrophages or Nrf2- and PPARÎł-deficient macrophages, we establish that in inflammatory conditions, the Nrf2 transcription factor controls CD36 expression independently of PPARÎł. In these conditions, Nrf2 activators, but not PPARÎł ligands, enhance CD36 expression and CD36-mediated Plasmodium phagocytosis. These results were confirmed in human macrophages and in vivo where only Nrf2 activators improve the outcome of severe malaria. Collectively, this report highlights that the Nrf2 transcription factor could be an alternative target to PPARÎł in the control of severe malaria through parasite clearance
Do ethnobotanical and laboratory data predict clinical safety and efficacy of anti-malarial plants?
<p>Abstract</p> <p>Background</p> <p>Over 1200 plant species are reported in ethnobotanical studies for the treatment of malaria and fevers, so it is important to prioritize plants for further development of anti-malarials.</p> <p>Methods</p> <p>The âRITAM scoreâ was designed to combine information from systematic literature searches of published ethnobotanical studies and laboratory pharmacological studies of efficacy and safety, in order to prioritize plants for further research. It was evaluated by correlating it with the results of clinical trials.</p> <p>Results and discussion</p> <p>The laboratory efficacy score correlated with clinical parasite clearance (r<sub>s</sub>=0.7). The ethnobotanical component correlated weakly with clinical symptom clearance but not with parasite clearance. The safety component was difficult to validate as all plants entering clinical trials were generally considered safe, so there was no clinical data on toxic plants.</p> <p>Conclusion</p> <p>The RITAM score (especially the efficacy and safety components) can be used as part of the selection process for prioritising plants for further research as anti-malarial drug candidates. The validation in this study was limited by the very small number of available clinical studies, and the heterogeneity of patients included.</p
Herbal therapy associated with antibiotic therapy: potentiation of the antibiotic activity against methicillin â resistant Staphylococcus aureus by Turnera ulmifolia L
<p>Abstract</p> <p>Background</p> <p><it>Staphylococcus </it>genus is widely spread in nature being part of the indigenous microbiota of skin and mucosa of animal and birds. Some <it>Staphylococcus </it>species are frequently recognized as etiological agents of many animal and human opportunistic infections This is the first report testing the antibiotic resistance-modifying activity of <it>Turnera ulmifolia </it>against methicillin-resistant <it>Staphylococcus aureus </it>â MRSA strain.</p> <p>Methods</p> <p>In this study an ethanol extract of <it>Turnera ulmifolia </it>L. and chlorpromazine were tested for their antimicrobial activity alone or in combination with aminoglycosides against an MRSA strain.</p> <p>Results</p> <p>The synergism of the ethanol extract and aminoglycosides were verified using microdillution method. A synergistic effect of this extract on gentamicin and kanamycin was demonstrated. Similarly, a potentiating effect of chlorpromazine on kanamycin, gentamicin and neomycin, indicating the involvement of an efflux system in the resistance to these aminoglycosides.</p> <p>Conclusion</p> <p>It is therefore suggested that extracts from <it>Turnera ulmifolia </it>could be used as a source of plant-derived natural products with resistance-modifying activity, constituting a new weapon against the problem of bacterial resistance to antibiotics demonstrated in MRSA strains.</p
Subinhibitory Concentrations of Perilla Oil Affect the Expression of Secreted Virulence Factor Genes in Staphylococcus aureus
BACKGROUND: The pathogenicity of staphylococcus aureus is dependent largely upon its ability to secrete a number of virulence factors, therefore, anti-virulence strategy to combat S. aureus-mediated infections is now gaining great interest. It is widely recognized that some plant essential oils could affect the production of staphylococcal exotoxins when used at subinhibitory concentrations. Perilla [Perilla frutescens (L.) Britton], a natural medicine found in eastern Asia, is primarily used as both a medicinal and culinary herb. Its essential oil (perilla oil) has been previously demonstrated to be active against S. aureus. However, there are no data on the influence of perilla oil on the production of S. aureus exotoxins. METHODOLOGY/PRINCIPAL FINDINGS: A broth microdilution method was used to determine the minimum inhibitory concentrations (MICs) of perilla oil against S. aureus strains. Hemolysis, tumour necrosis factor (TNF) release, Western blot, and real-time RT-PCR assays were performed to evaluate the effects of subinhibitory concentrations of perilla oil on exotoxins production in S. aureus. The data presented here show that perilla oil dose-dependently decreased the production of α-toxin, enterotoxins A and B (the major staphylococcal enterotoxins), and toxic shock syndrome toxin 1 (TSST-1) in both methicillin-sensitive S. aureus (MSSA) and methicillin-resistant S. aureus (MRSA). CONCLUSIONS/SIGNIFICANCE: The production of α-toxin, SEA, SEB, and TSST-1 in S. aureus was decreased by perilla oil. These data suggest that perilla oil may be useful for the treatment of S. aureus infections when used in combination with ÎČ-lactam antibiotics, which can increase exotoxins production by S. aureus at subinhibitory concentrations. Furthermore, perilla oil could be rationally applied in food systems as a novel food preservative both to inhibit the growth of S. aureus and to repress the production of exotoxins, particularly staphylococcal enterotoxins
A âreverse pharmacologyâ approach for developing an anti-malarial phytomedicine
A âreverse pharmacologyâ approach to developing an anti-malarial phytomedicine was designed and implemented in Mali, resulting in a new standardized herbal anti-malarial after six years of research. The first step was to select a remedy for development, through a retrospective treatment-outcome study. The second step was a dose-escalating clinical trial that showed a dose-response phenomenon and helped select the safest and most efficacious dose. The third step was a randomized controlled trial to compare the phytomedicine to the standard first-line treatment. The last step was to identify active compounds which can be used as markers for standardization and quality control. This example of âreverse pharmacologyâ shows that a standardized phytomedicine can be developed faster and more cheaply than conventional drugs. Even if both approaches are not fully comparable, their efficiency in terms of public health and their complementarity should be thoroughly considered
In vitro antiplasmodial activity of crude extracts of Tetrapleura tetraptera and Copaifera religiosa
Antischistosomal Activity of Trioxaquines: In Vivo Efficacy and Mechanism of Action on Schistosoma mansoni
Schistosomiasis is among the most neglected tropical diseases, since its mode of spreading tends to limit the contamination to people who are in contact with contaminated waters in endemic countries. Here we report the in vitro and in vivo anti-schistosomal activities of trioxaquines. These hybrid molecules are highly active on the larval forms of the worms and exhibit different modes of action, not only the alkylation of heme. The synergy observed with praziquantel on infected mice is in favor of the development of these trioxaquines as potential anti-schistosomal agents
- âŠ