4 research outputs found

    Safety functional requirements for “Robot Fleets for Highly effective Agriculture and Forestry Management”

    Get PDF
    This paper summarizes the steps to be followed in order to achieve a safety verified design of RHEA robots units. It provides a detailed description of current international standards as well as scientific literature related to safety analysis and fault detection and isolation. A large committee of partners has been involved in this paper, which may be considered as a technical committee for the revision of the progress of safety development throughout the progress of RHEA project. Partners related to agricultural machinery, automation, and application development declare the interest of providing a stable framework for bringing the safety verification level required to be able to commercial unmanned vehicles such as those described in the RHEA flee

    Fleets of robots for environmentally-safe pest control in agriculture

    Get PDF
    Feeding the growing global population requires an annual increase in food production. This requirement suggests an increase in the use of pesticides, which represents an unsustainable chemical load for the environment. To reduce pesticide input and preserve the environment while maintaining the necessary level of food production, the efficiency of relevant processes must be drastically improved. Within this context, this research strived to design, develop, test and assess a new generation of automatic and robotic systems for effective weed and pest control aimed at diminishing the use of agricultural chemical inputs, increasing crop quality and improving the health and safety of production operators. To achieve this overall objective, a fleet of heterogeneous ground and aerial robots was developed and equipped with innovative sensors, enhanced end-effectors and improved decision control algorithms to cover a large variety of agricultural situations. This article describes the scientific and technical objectives, challenges and outcomes achieved in three common crops

    Fleets of robots for environmentally-safe pest control in agriculture

    No full text
    González-de-Santos, Pablo et al.Feeding the growing global population requires an annual increase in food production. This requirement suggests an increase in the use of pesticides, which represents an unsustainable chemical load for the environment. To reduce pesticide input and preserve the environment while maintaining the necessary level of food production, the efficiency of relevant processes must be drastically improved. Within this context, this research strived to design, develop, test and assess a new generation of automatic and robotic systems for effective weed and pest control aimed at diminishing the use of agricultural chemical inputs, increasing crop quality and improving the health and safety of production operators. To achieve this overall objective, a fleet of heterogeneous ground and aerial robots was developed and equipped with innovative sensors, enhanced end-effectors and improved decision control algorithms to cover a large variety of agricultural situations. This article describes the scientific and technical objectives, challenges and outcomes achieved in three common crops.The research leading to these results received funding from the European Union’s Seventh Framework Programme [FP7/2007-2013] under Grant Agreement nº 245986. Support for publishing this article has been provided by CSIC.Peer reviewe
    corecore