566 research outputs found

    Mapping the spatial and temporal stability of production in mixed farming systems: an index that integrates crop and pasture productivity to assist in the management of variability

    Get PDF
    While precision agriculture (PA) technologies are widely used in cropping systems, these technologies have received less attention in mixed farming systems. Little is known about the nature, extent, and temporal stability of spatial variability of pastures in mixed farming systems and the feasibility of managing this variability. This paper describes a technique to create a Stability Index based on both crop grain yield and pasture total green dry matter (TGDM) production over time, using high resolution spatial data in two climatic zones of Australia. Four productivity zones were used to characterise the Stability Index: high and stable, high and unstable, low and stable, and low and unstable. Mapping the indices shows the location and size of the spatial and temporal features of each paddock. The features of the stability zones generally corresponded with soil texture classes. Testing the Stability Indices with a Kruskal–Wallis one-way ANOVA showed significantly different medians for high and low production categories for both grain yield and pasture TGDM (p < 0.01). Crop grain yield stability showed significant differences between medians. In pasture TGDM, the differences between stability medians were not significant, but the technique still separated medians into stable and unstable groupings. This production Stability Index has the potential to be used by farmers to manage spatial variability in mixed farming systems by identifying homogenous areas within a paddock for investigation/amelioration and can also separate out areas of either spatial and/or temporal instability for specific management strategies

    A novel approach to fault diagnosis in multicircuit transmission lines using fuzzy ARTmap neural networks

    Full text link

    Cross-Correlation of the Cosmic Microwave Background with the 2MASS Galaxy Survey: Signatures of Dark Energy, Hot Gas, and Point Sources

    Full text link
    We cross-correlate the Cosmic Microwave Background (CMB) temperature anisotropies observed by the Wilkinson Microwave Anisotropy Probe (WMAP) with the projected distribution of extended sources in the Two Micron All Sky Survey (2MASS). By modelling the theoretical expectation for this signal, we extract the signatures of dark energy (Integrated Sachs-Wolfe effect;ISW), hot gas (thermal Sunyaev-Zeldovich effect;thermal SZ), and microwave point sources in the cross-correlation. Our strongest signal is the thermal SZ, at the 3.1-3.7 \sigma level, which is consistent with the theoretical prediction based on observations of X-ray clusters. We also see the ISW signal at the 2.5 \sigma level, which is consistent with the expected value for the concordance LCDM cosmology, and is an independent signature of the presence of dark energy in the universe. Finally, we see the signature of microwave point sources at the 2.7 \sigma level.Comment: 35 pages (preprint format), 8 figures. In addition to minor revisions based on referee's comments, after correcting for a bug in the code, the SZ detection is consistent with the X-ray observations. Accepeted for publication in Physical Review

    Cross-Correlation Studies with CMB Polarization Maps

    Get PDF
    The free-electron population during the reionized epoch rescatters CMB temperature quadrupole and generates a now well-known polarization signal at large angular scales. While this contribution has been detected in the temperature-polarization cross power spectrum measured with WMAP data, due to the large cosmic variance associated with anisotropy measurements at tens of degree angular scales only limited information related to reionization, such as the optical depth to electron scattering, can be extracted. The inhomogeneities in the free-electron population lead to an additional secondary polarization anisotropy contribution at arcminute scales. While the fluctuation amplitude, relative to dominant primordial fluctuations, is small, we suggest that a cross-correlation between arcminute scale CMB polarization data and a tracer field of the high redshift universe, such as through fluctuations captured by the 21 cm neutral Hydrogen background or those in the infrared background related to first proto-galaxies, may allow one to study additional details related to reionization. For this purpose, we discuss an optimized higher order correlation measurement, in the form of a three-point function, including information from large angular scale CMB temperature anisotropies in addition to arcminute scale polarization signal related to inhomogeneous reionization. We suggest that the proposed bispectrum can be measured with a substantial signal-to-noise ratio and does not require all-sky maps of CMB polarization or that of the tracer field. A measurement such as the one proposed may allow one to establish the epoch when CMB polarization related to reionization is generated and to address if the universe was reionized once or twice.Comment: 13 pages, 7 figures; Version in press with Phys. Rev.

    Cosmic Microwave Background Anisotropy with Cosine-Type Quintessence

    Full text link
    We study the Cosmic Microwave Background (CMB) anisotropies produced by cosine-type quintessence models. In our analysis, effects of the adiabatic and isocurvature fluctuations are both taken into account. For purely adiabatic fluctuations with scale invariant spectrum, we obtain a stringent constraint on the model parameters using the CMB data from COBE, BOOMERanG and MAXIMA. Furthermore, it is shown that isocurvature fluctuations have significant effects on the CMB angular power spectrum at low multipoles in some parameter space, which may be detectable in future satellite experiments. Such a signal may be used to test the cosine-type quintessence models.Comment: 21 pages, 9 figure

    Some anisotropic universes in the presence of imperfect fluid coupling with spatial curvature

    Full text link
    We consider Bianchi VI spacetime, which also can be reduced to Bianchi types VI0-V-III-I. We initially consider the most general form of the energy-momentum tensor which yields anisotropic stress and heat flow. We then derive an energy-momentum tensor that couples with the spatial curvature in a way so as to cancel out the terms that arise due to the spatial curvature in the evolution equations of the Einstein field equations. We obtain exact solutions for the universes indefinetly expanding with constant mean deceleration parameter. The solutions are beriefly discussed for each Bianchi type. The dynamics of the models and fluid are examined briefly, and the models that can approach to isotropy are determined. We conclude that even if the observed universe is almost isotropic, this does not necessarily imply the isotropy of the fluid (e.g., dark energy) affecting the evolution of the universe within the context of general relativity.Comment: 17 pages, no figures; to appear in International Journal of Theoretical Physics; in this version (which is more concise) an equation added, some references updated and adde

    Higher Grading Conformal Affine Toda Teory and (Generalized) Sine-Gordon/Massive Thirring Duality

    Full text link
    Some properties of the higher grading integrable generalizations of the conformal affine Toda systems are studied. The fields associated to the non-zero grade generators are Dirac spinors. The effective action is written in terms of the Wess-Zumino-Novikov-Witten (WZNW) action associated to an affine Lie algebra, and an off-critical theory is obtained as the result of the spontaneous breakdown of the conformal symmetry. Moreover, the off-critical theory presents a remarkable equivalence between the Noether and topological currents of the model. Related to the off-critical model we define a real and local Lagrangian provided some reality conditions are imposed on the fields of the model. This real action model is expected to describe the soliton sector of the original model, and turns out to be the master action from which we uncover the weak-strong phases described by (generalized) massive Thirring and sine-Gordon type models, respectively. The case of any (untwisted) affine Lie algebra furnished with the principal gradation is studied in some detail. The example of sl^(n)(n=2,3)\hat{sl}(n) (n=2,3) is presented explicitly.Comment: 28 pages, JHEP styl

    High speed single pixel imaging with advanced microLED digital light projector

    Get PDF
    We demonstrate high speed single pixel imaging using an advanced microLED-on-CMOS array. We show 128x128 pixel image reconstruction at an effective frame rate of 3.8fps and lower resolution reconstructions at over 120fps. The method is demonstrated to be compatible with common compressive imaging techniques

    BINGO: A code for the efficient computation of the scalar bi-spectrum

    Full text link
    We present a new and accurate Fortran code, the BI-spectra and Non-Gaussianity Operator (BINGO), for the efficient numerical computation of the scalar bi-spectrum and the non-Gaussianity parameter f_{NL} in single field inflationary models involving the canonical scalar field. The code can calculate all the different contributions to the bi-spectrum and the parameter f_{NL} for an arbitrary triangular configuration of the wavevectors. Focusing firstly on the equilateral limit, we illustrate the accuracy of BINGO by comparing the results from the code with the spectral dependence of the bi-spectrum expected in power law inflation. Then, considering an arbitrary triangular configuration, we contrast the numerical results with the analytical expression available in the slow roll limit, for, say, the case of the conventional quadratic potential. Considering a non-trivial scenario involving deviations from slow roll, we compare the results from the code with the analytical results that have recently been obtained in the case of the Starobinsky model in the equilateral limit. As an immediate application, we utilize BINGO to examine of the power of the non-Gaussianity parameter f_{NL} to discriminate between various inflationary models that admit departures from slow roll and lead to similar features in the scalar power spectrum. We close with a summary and discussion on the implications of the results we obtain.Comment: v1: 5 pages, 5 figures; v2: 35 pages, 11 figures, title changed, extensively revised; v3: 36 pages, 11 figures, to appear in JCAP. The BINGO code is available online at http://www.physics.iitm.ac.in/~sriram/bingo/bingo.htm
    • …
    corecore