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Abstract   22 

While precision agriculture (PA) technologies are widely used in cropping systems, these technologies have 23 

received less attention in mixed farming systems. Little is known about the nature, extent, and temporal stability 24 

of spatial variability of pastures in mixed farming systems and the feasibility of managing this variability. This 25 

paper describes a technique to create a Stability Index based on both crop grain yield and pasture total green dry 26 

matter (TGDM) production over time, using high resolution spatial data in two climatic zones of Australia. Four 27 

productivity zones were used to characterise the stability index: high and stable, high and unstable, low and 28 

stable, and low and unstable. Mapping the indices shows the location and size of the spatial and temporal 29 

features of each paddock. The features of the stability zones generally corresponded with soil texture classes. 30 

Testing the Stability Indices with a Kruskal-Wallis one-way ANOVA showed significantly different medians for 31 

high and low production categories for both grain yield and pasture TGDM (p <0.01). Crop grain yield stability 32 

showed significant differences between medians. In pasture TGDM, the differences between stability medians 33 

were not significant, but the technique still separated medians into stable and unstable groupings. This 34 

production Stability Index has the potential to be used by farmers to manage spatial variability in mixed farming 35 

systems by identifying homogenous areas within a paddock for investigation / amelioration and can also 36 

separate out areas of either spatial and/or temporal instability for specific management strategies. 37 

Key words 38 

Stability Index, Spatial and temporal variability, Mixed farming systems, Crop-livestock integration, Precision 39 

agriculture, Management zones. 40 

Introduction 41 

Mixed farming systems that combine grain cropping and pasture-based livestock enterprises dominate the 42 

dryland farming regions of Australia. In southern Australia, the mixed farming zone lies between the 300 and 43 

600 mm average annual rainfall isohyets and is highly seasonal, encompassing climates with cool, wet winters 44 

and hot, dry summers. The combination of highly variable rainfall and volatile commodity prices faced by 45 

Australian farmers in these regions has favoured a diversified farming system that moderates the risks to the 46 

farm enterprise (Bell and Moore 2011). While precision agriculture (PA) technologies are widely used in 47 

Australian cropping systems, their use as a whole-of-farm management strategy in mixed farming systems has 48 

received far less attention. There are few published reports of attempts to use spatial monitoring technologies to 49 

investigate livestock and pasture interactions in the pasture phase and to follow the after-effects of different 50 

management strategies into a subsequent cropping phase. Relatively little is known about the nature, extent, or 51 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



temporal stability in relation to spatial variability of pasture production in mixed farming systems, whether it is 52 

feasible to manage this variability in a site-specific way and therefore, to integrate it into a precision 53 

management system across crop and pasture sequences. For the most part paddocks tend to be managed as 54 

single units during pasture phases, ignoring the existence of productivity gradients across the landscape (Hill et 55 

al. 1999). Given that, in a typical Australian mixed farming system, somewhere between 20 and 50% of the 56 

farm area is in pasture at any time (Angus and Peoples 2013; Bell et al. 2014b; Ewing and Flugge 2004; Li et al. 57 

2010), this is an aspect of precision farming technology that has not been previously explored to any extent. A 58 

significant amount of on-farm high-resolution data has been gathered and is available for analysis of within-59 

paddock spatial variability of yield in cropping phases in the form of geo-referenced yield monitor data, soil 60 

analytical data (Oliver and Robertson 2009; Simeoni et al. 2009; Sudduth et al. 2010; Sudduth et al. 2009), 61 

proximal soil sensors (Pullanagari et al. 2012; Schirrmann et al. 2011; Serrano et al. 2010; Sun et al. 2012) or 62 

combinations of these (Castrignanò et al. 2012; Wong et al. 2010). The most common approach to managing 63 

spatial variability in crops is to use this data to define ‘management zones’ in a system known as ‘site-specific 64 

management’ (SSM) (Plant 2001; Taylor et al. 2007; Whelan and McBratney 2003). SSM aims to better 65 

quantify and delineate the causes of yield variability between different parts of a paddock (Buttafuoco et al. 66 

2010; Farid et al. 2016; Moral et al. 2010). However, there is little information about the nature of spatial 67 

variability in pasture biomass production from these same paddocks when in a pasture phase. This presents a 68 

significant lost opportunity given that pasture phases can last from between one or two years (annual pastures) 69 

to between three and six years (perennial pastures) (Bell et al. 2014a; Kirkegaard et al. 2014; Nichols et al. 70 

2007). By and large, pasture–livestock phases are ‘low-input’, where livestock and the pastures they graze are 71 

managed less intensively than crops (Bell et al. 2014a; Kirkegaard et al. 2011). Several approaches have been 72 

used in the past to identify regions of temporal stability in crops (Blackmore 2000, 2003; Diacono et al. 2012; 73 

Dobermann et al. 2003; Marques da Silva 2006); and in pastures (Marques da Silva et al. 2008; Serrano et al. 74 

2014; Schmer et al. 2009; Serrano et al. 2011; Xu et al. 2006). The assessment of temporal stability is important 75 

because it affects the reliability of management zones as a strategy for differential management in crop and 76 

pasture phases. 77 

The objectives of this research were: 78 

1. To determine a methodology by which NDVI can be calibrated to estimate pasture biomass to 79 

characterise spatial variability of production in the pasture phase of mixed farming systems;  80 
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2. To compare within-paddock spatial variation in crop grain yield and pasture biomass production in two 81 

mixed farming systems; and 82 

3. To create a single map of spatial variation of crop yield and pasture biomass production at a point, 83 

across a paddock, a “Stability Index”, to assist decision making by farm owners and managers in 84 

implementing site-specific management strategies in a sequence of grazed pasture and cropping phases. 85 

It was hypothesised that spatial variation of production in both the crop and pasture phases of a mixed farming 86 

system could be identified and quantified at high resolution using PA technologies and that the data so acquired 87 

could be used to create a single index of productivity that described the spatial variation in, and temporal 88 

stability of, both crop grain and pasture biomass yields within a paddock over time. 89 

Materials and Methods 90 

Study sites 91 

Two properties were used for the study: “Milroy”, a 1900 ha sheep and cropping enterprise located at Brookton 92 

(32.22oS, 116.57oE), 120 km east of Perth, Western Australia (WA) and “Grandview”, a 2250 ha cattle and 93 

cropping enterprise located 10 km south of Yarrawonga (36.05oS, 145.60oE) in north-eastern Victoria (Fig. 1). 94 

Wheat (Triticum aestivum L.) and canola (Brassica napus L.) are the main crops grown on both properties. 95 

Pastures on “Milroy” are dominated by subterranean clover (Trifolium subterraneum L.) and capeweed 96 

(Arctotheca calendula L.) with some serradella (Ornithopus sativus Brot.), barley grass (Hordeum glaucum 97 

Steud.) and annual ryegrass (Lolium rigidum Gaud.). After a continuous cropping rotation of four years or more, 98 

(eg canola, wheat, wheat, barley), pastures at “Milroy” are re-sown. Where pasture phases occur in between 99 

crops (eg wheat, pasture, wheat, pasture, wheat), pastures are self-sown. 100 

At “Grandview”, the crop and pasture phases are each of six years’ duration. Pastures comprise lucerne 101 

(Medicago sativa L.), subterranean clover and chicory (Chicorium intybus L.), and are established by under-102 

sowing with the crop in the last cropping year. Crop yield and pasture biomass data was collected from three 103 

paddocks on each property between 2004 and 2014. Here data is presented for one representative paddock from 104 

each property: paddock M41 at “Milroy” (2008-2014) and paddock GV39 at “Grandview” (2007-2013). Pasture 105 

and crop rotations and paddock sizes for both study paddocks are described in Table 1. At both properties 106 

livestock were set-stocked. The paddock at “Milroy” was stocked with cross-bred lambs at 8 dry sheep 107 

equivalent (DSE) / ha in 2012 and 9 DSE / ha in 2013. At “Grandview” the paddock was stocked with Angus 108 

feeder steers at an equivalent stocking rate of 10 DSE / ha.  109 
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 117 

Fig. 1  Location of the two study sites 118 
 119 

“Milroy” has a Mediterranean climate with a winter dominant rainfall, whereas “Grandview” has a temperate 120 

climate and rainfall pattern. The mean annual rainfall (AR) and growing season rainfall (GSR) at “Milroy” is 121 

437 mm and 357 mm, and at “Grandview” is 539 mm and 359 mm, respectively (Table 2). GSR is defined as 122 

total rainfall received between 1 April – 31 October. 123 

Rainfall data from 1970 to 2000 for both properties was extracted from SILO Data Drill Set 124 

(https://www.longpaddock.qld.gov.au/silo/datadrill/). The Data Drill accesses grids of data derived by 125 

interpolating Australian Bureau of Meteorology records (Jeffrey et al. 2001).  126 

Soil landscapes at “Milroy” (Fig. 2) are highly variable, consisting of Red, Yellow and Brown Chromosols, 127 

Ferric Chromosols, Yellow/Brown Sodosols and Bleached-Orthic Tenosols (Isbell 2016), with soil surface 128 

textures ranging from sandy loams to sandy gravels. Soils at “Grandview” (Fig. 4) comprise Red-Brown 129 

Chromosols, Sodosols and patches of Vertosols (Isbell 2016).  130 

Table 1 Crop/pasture sequences for paddocks used in the studya  131 

YEAR 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 

“MILROY”Brookton,WA        

M41 (70 ha) L B P P C W P P P P W 

“GRANDVIEW”Yarrawonga,Vic       

GV39 (60 ha) P C W C W W B P P P P 
aThe paddock notation (e.g. M41) is the system used by the farm owners to identify individual paddocks. B = 132 

barley, C = canola, L = lupins, W = wheat, P = pasture. Crop yield and pasture TGDM data used for calculating 133 

the paddock stability indices are in bold; paddock size is given in the brackets 134 

 

“Grandview”  
(Yarrawonga, Vic) 

“Milroy” 

(Brookton, WA) 
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Table 2 Average monthly rainfall, maximum and minimum temperatures (1970-2000) for “Milroy”, Brookton, 135 

WA and “Grandview” Yarrawonga, NSWa  136 

Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

“MILROY”             

Tmax (oC) 34 33 30 26 21 18 16 17 20 24 28 32 

Tmin (oC) 16 17 15 12 8 6 5 5 6 8 11 14 

Rain (mm) 16 20 16 27 52 80 81 63 42 24 19 11 

“GRANDVIEW”             

Tmax (oC) 32 32 28 23 18 14 13 15 18 22 26 30 

Tmin (oC) 16 16 13 9 7 4 3 4 6 8 11 14 

Rain (mm) 45 32 31 42 58 48 58 59 54 53 41 37 
aThe growing season is defined as the period between 1 April and 31 October. Brookton and Yarrawonga 137 

climate data was obtained from the SILO Data Drill data base 138 

Electromagnetic induction surveys  139 

Electromagnetic induction (EMI) surveys were conducted across both paddocks in 2013, whilst they were in a 140 

pasture rotation. At “Milroy”, EMI measurements were taken using a DUALEM 21S sensor (Dualem Inc, 141 

Milton, ON, Canada) using a commercial contractor. The unit was set to measure to a depth of 0.5 m in 142 

horizontal dipole mode (ECah) and 1 m in vertical mode (ECav). Data was gathered on 35 m transects at a 143 

sampling rate of one reading/sec and a groundspeed of between 15 and 20 km/h, resulting in a sampling density 144 

of approximately 60 readings/ha. All data was geo-referenced using a real-time kinematic (RTK) differential 145 

correction signal. 146 

At “Grandview” EMI data was again collected by a commercial contractor, using a Geonics EM38-M2 with 0.5 147 

m and 1 m intercoil spacings (Geonics Limited, Mississauga, ON, Canada). The instrument was used in 148 

horizontal mode (ECah), giving a conductivity of 0.38 m at 0.5 m coil separation and 0.75 m conductivity at 1 m 149 

coil separation. Transect width was 30 m. The horizontal mode was used at the recommendation of the 150 

contractor, who has many years of EMI sensing experience in the region. The instrument was calibrated on-site 151 

as per instructions outlined in the Geonics EM38-MK2 Ground Conductivity Meter Operating Manual, July 152 

2008. Data was logged using an Allegro CX Field PC (Juniper Systems, Logan, Utah, USA) loaded with 153 

Geonics EM38-MK2 software. The data logger was set to acquire and record survey data from the EM38-MK2 154 

system at four readings per second. Output feed and guidance was provided using a Raven ‘Cruizer’ GPS 155 

(Raven Industries, Sioux Falls, South Dakota, USA). 156 

Soil sampling and testing  157 
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Soil sampling was conducted across both paddocks in 2013 in conjunction with the EMI scanning, whilst they 158 

were in a pasture rotation. This was before the spatial mapping and stability index work had been completed. At 159 

both properties, soil sample locations and number of sampling sites were determined by the soil-sensing 160 

contractors using a 50 mm hydraulic soil corer to ground-truth the data and support the interpretation of the EMI 161 

survey results. Samples were taken at 0-0.1 m, 0.1-0.3 m and 0.3-0.6 m. Additional soil testing was carried out 162 

at “Milroy” in 2014 by the farm owner at eight sites chosen by him, within paddock M41 as part of a pre-liming 163 

paddock analysis. Samples for these tests were taken between 0 m and 0.5 m, at 0.1 m intervals, using a 164 

hydraulic soil coring drill. All soil analyses (N, P, K, S, pH, OC, PBI, Cond, Cu, Fe, Mn, Zn, Ca, Mg, Al, Na, B) 165 

were conducted by the CSBP Soil and Plant Analysis Laboratories (Bibra Lake, Western Australia) 166 

(www.csbp.com.au/CSBP-Lab). 167 

Crop harvest yield data and yield mapping 168 

Grain yield data was acquired at both properties from harvester mounted yield monitors using differentially 169 

corrected real-time kinematic (RTK) GPS systems. Raw yield data was processed using the protocol developed 170 

by Taylor et al. (2007) to remove outliers and trim data to practical yield threshold limits. Yield data was then 171 

imported into ArcGIS 10.2 (ESRI, Redlands, California) and mapped to a standard 5 m x 5 m grid. The grid was 172 

established in ArcGIS 10.2 using the Geospatial Modelling Environment platform (Spatial Ecology, 173 

http://www.spatialecology.com) and kept constant throughout the analysis. Data was interpolated to the grid 174 

using Vesper 1.62 software (Australian Centre for Precision Agriculture, The University of Sydney, NSW) 175 

(Whelan et al. 2001). Block kriging was used with an exponential variogram and a block size of 10 m x 10 m to 176 

generate continuous surface maps. Kriging was used as there were insufficient data points to confidently 177 

interpolate yield values between sampled areas and to enable data from different times and sources to be 178 

compared. General settings were as described in the Vesper 1.62 User Manual (Australian Centre for Precision 179 

Agriculture, The University of Sydney, NSW) (Whelan et al. 2001) .  180 

Mapping pasture green herbage mass in pastures 181 

Red (~650 nm) and near-infrared (NIR) (~880 nm) reflectance values for the calculation of pasture vegetation 182 

indices (Holland et al. 2004) were acquired using a Crop CircleTM ACS-210 active sensor (Holland Scientific 183 

Inc., Lincoln, NE, USA). To map the pasture biomass, the Crop CircleTM sensor head was linked to a Trimble 184 

EZ-Guide 250 GPS Lightbar guidance system (Trimble, Sunnyvale, CA, USA) and a Holland Scientific 185 

GeoSCOUT 400 series data logger set to record geo-referenced red and NIR outputs at 1 Hz. The Crop CircleTM 186 

sensor was vehicle mounted so that its height was approximately 0.9 m above the ground. All Crop CircleTM 187 
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data was collected along transects spaced 40 m apart. Speed across the paddocks was approximately 10–15 188 

km/hr. Normalised difference vegetation index (NDVI) values from the transects were trimmed to remove 189 

values <0.1 and >0.9. Remaining points were then imported into ArcGIS 10.2 and mapped to the 5 m x 5 m 190 

grid. Data was interpolated to the grid using Vesper 1.62 software as previously described. At “Milroy”, Crop 191 

CircleTM scans were taken in July, August and September 2012 and in August/ September 2013. At 192 

“Grandview”, scans were conducted in August and September 2012 and September/ October 2013. 193 

Collection of pasture samples for calibration of vegetation index 194 

To calibrate the NDVI scans to actual pasture biomass present in the paddock, twenty-five randomly selected 195 

pasture samples were taken across each paddock. Multivariate k-means clustering (JMP version 12.2; SAS 196 

Institute Inc., Cary, NC, 2016), based on the NDVI values from the Crop CircleTM scans, was used to randomly 197 

select twenty-five pasture sampling sites in each paddock. The NDVI point values from the pasture scans were 198 

divided into five clusters, and five points selected randomly from within each cluster, to give twenty-five 199 

sampling points for each paddock. These sites were then imported into ArcGIS 10.2 and mapped as geo-200 

referenced points in the paddock. To locate each sampling point for the calibration cuts, the selected pasture 201 

sites were imported into ‘gpMapper’ mapping software (Fairport Farm Software, Perth WA), loaded on a laptop 202 

computer and linked to the Trimble EZ-guide 250 GPS. Pasture samples were then taken at these sites in Spring 203 

(September / October) of 2012 and 2013 at both properties, when plants were actively growing and pasture 204 

canopies were reasonably extensive. At each sample point, the Crop CircleTM unit was used in ‘hand-held’ 205 

configuration to measure the NDVI value within a 0.56 m x 0.12 m quadrat. Pasture within the quadrat was 206 

harvested to ground level using battery powered shears. The cut pasture samples were subsequently sorted into 207 

green and dead herbage mass fractions and legume/grass/herb fractions and oven-dried at 80oC for 48 hours 208 

before weighing, to provide total herbage mass (kg) of total green dry matter (TGDM) per hectare for each 209 

sample site. To test the validity of using NDVI rather than an alternative vegetation index, the averaged red and 210 

NIR reflectance values acquired from Crop CircleTM scans for each pasture sample site were used to create four 211 

different spectral indices; (i) NDVI, (ii) the Soil-Adjusted Vegetation Index, SAVI (Huete 1988), (iii) the Non-212 

Linear Vegetation Index, NLI (Goel and Qin 1994) and (iv) the Modified Non-Linear Vegetation Index, MNLI 213 

(Gong et al. 2003). Because of the small sample sizes involved (n=25), the datasets were validated using Leave 214 

One Out Cross Validation (LOOCV) in the R statistical package (v. 3.3.3) (R Core Team 2017). 215 
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Calculation of TGDM calibration equations 216 

The NDVI value taken at each pasture sampling cut site was regressed against the corresponding TGDM site 217 

value from the pasture sample cuts to produce a calibration equation for each paddock in each year of scanning. 218 

As the two sites were more than 3000 km apart, and in different climatic zones, it was not valid to combine data 219 

into a single calibration equation. The calibration equations were then used to convert NDVI values acquired 220 

from the pasture scans to geo-referenced TGDM values. The TGDM values were imported into ArcGIS 10.2 to 221 

produce maps showing spatial variation in predicted pasture biomass yield for each paddock.  222 

Calculating the spatial trend of yield 223 

The spatial trend of yield for crops and pastures was determined by standardising the yield data at each grid 224 

point over a sequence of yield maps. Standardising the data replaces the units of yield with a percentage that can 225 

be used for comparison between crops and pastures, as each point is compared to the paddock average of 100%.  226 

The standardised yield was calculated as per Blackmore (2000): 227 

𝑠𝑖  =  (
𝑦𝑖

�̅�
)     × 100                                                             (1) 228 

where si is the standardised crop or pasture yield (%) at point i; yi is the interpolated yield at point i; and �̅� is the 229 

mean yield for that year.  230 

The point mean was then calculated over the years of interest, enabling different crops or pasture to be included 231 

and compared: 232 

�̅�𝑖 =  (∑ 𝑠𝑖,𝑡
𝑛
𝑡=1 )/𝑛                                                           (2) 233 

where �̅�𝑖 is the average of 𝑠𝑖 , the standardised yield at point i, over n years.  234 

This standardised yield shows, at any point, in any one year, how the yield differs from the paddock mean 235 

(100%). The standardised data were then classified into four yield zones in relation to the relative percentage 236 

difference from the paddock mean (100%) using the yield data distribution quartiles to define the four yield 237 

classes. The areas for which this value was greater than the paddock mean were classified as ‘high yielding’ 238 

(HY, 4th quartile) and ‘above average’ (AA, 3rd quartile); while the areas for which this value was less than the 239 

paddock mean were defined as ‘below average’ (BA, 2nd quartile) and ‘low yielding’ (LY, 1st quartile). Yield 240 

maps of spatial trend for crop and pasture were then created by averaging the standardised yield at each grid cell 241 

over the years being considered (effectively ‘combining’ yield maps) and processing in ArcGIS 10.2. These 242 

spatial trend maps show the spatial yield pattern in a paddock over time for both crops and pastures. 243 
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Calculating temporal stability 244 

To estimate how stable in time the crop and pasture yields were at “Milroy” and “Grandview”, the coefficient of 245 

variation (CV) in yield was calculated at each point in the paddock for which there was a yield value for either 246 

grain yield or pasture TGDM, following the procedure developed by Blackmore (2000). The advantage of using 247 

CV is that it is unit-less, allowing multiple crops and pastures to be compared with each other.  248 

The CV was calculated from the standardised yield values calculated previously, using the equation from 249 

Blackmore (2000):  250 

CV𝑠𝑖 =

(
𝑛 ∑ 𝑠𝑖𝑡

2 −(∑ 𝑠𝑖𝑡
𝑛
𝑡=1 )

2𝑛
𝑡=1

𝑛(𝑛−1)
)

0.5

�̅�𝑖
× 100                                (3) 251 

where CVsi is the coefficient of variation of the standardised data at point i, over n years. 252 

Using this equation, the CVs of crop grain yield and pasture TGDM yield were calculated for “Milroy” paddock 253 

M41 and “Grandview” paddock GV39, for both cropping and pasture phases for the years with sufficient data 254 

(Table 1). Five arbitrary classes were used: 0-10%, 11-20%, 21-30%, 31-40% and >40%. The CV data for crop 255 

yields and pasture DM yields were processed in ArcGIS 10.2 to produce maps showing the range of CV values 256 

(%) across each paddock for crop grain yield and pasture TGDM yield. The temporal stability maps were then 257 

classified into stable yield zones and unstable yield zones when a given temporal CV value (threshold) was 258 

adopted to subdivide the two zones.  259 

Mapping spatial and temporal trend  260 

By combining the data behind the spatial trend maps and the temporal stability data, a single representation of 261 

each paddock over time and for both crop and pasture–livestock phases was developed by classifying the 262 

paddock into four categories based on yield (high or low) and stability (stable or unstable) at a point in time 263 

(Table 3). Because yield and stability are not mutually exclusive variables, there were four possible 264 

combinations for these two variables: high and stable (HS); high and unstable (HUS); low and stable (LS), and 265 

low and unstable (LUS). Crop grain and pasture TGDM yields were considered high if a particular point value 266 

was above the mean yield (>100%) and vice versa. The stability of yield at that point was compared to a 267 

threshold value - in this case, the mean of the distribution of yield CV values for the paddock - to determine if 268 

the yield at that point was stable (< mean CV) or unstable (> mean CV) (Table 4).  269 

The spatial trend and temporal stability categories for the crop and pasture rotations were allocated a numerical 270 

code between 1 and 4 based on the class conditions (Table 3) and the concatenate function in Microsoft Excel 271 

was then used to combine crop and pasture codes at each point to create an overall stability index for each 272 
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paddock. Mapping this index shows areas of the paddock that were high and stable (HS) in both crop and 273 

pasture yield (ie concatonation gives a “1,1” result), low and stable in both crop and pasture yield (LS - “3,3”), 274 

areas that were high and unstable (HUS – “2,2”), and low and unstable (LUS – “4,4”). Because the crop and 275 

pasture yields at a point will not always be both high and stable, low and unstable etc, concatenation results in 276 

areas that were neither HS, HUS, LS or LUS, in the overall stability map, leaving areas that were uncategorised 277 

(e.g. “1,3”, “4,2” etc). There were areas of the paddock that remain uncategorised with the SI process, where 278 

production could be stable, but high yielding in one phase and low yielding in the other (eg, high and stable in 279 

crop, but low yielding and stable in pasture (HS/LS).  280 

Table 3 Stability Index (SI) classes, codes and the conditions for meeting a class 281 

 Condition 1 Condition 2 Code 

High and stable - HS  �̅�𝑖  >100 CV𝑠𝑖 < mean CV 1 

High and unstable - HUS  �̅�𝑖  >100 CV𝑠𝑖 > mean CV 2 

Low and stable - LS  �̅�𝑖  <100 CV𝑠𝑖 < mean CV 3 

Low and unstable - LUS  �̅�𝑖  <100 CV𝑠𝑖 > mean CV 4 

 282 

Table 4 Stability thresholds used in the calculation of stability indices for “Milroy” and “Grandview”  283 

paddocksa  284 

Property Paddock Stability threshold 

  Crop Pasture 

“MILROY” M41 13% 13% 

“GRANDVIEW” GV39 22% 12% 
aIn each case, the mean value of the distribution of cv values for crop or pasture were used  285 

Using such a large data set (15,000 data points - the “population”) in the statistical analysis would almost 286 

certainly have led to significant differences between the medians (Meehl 1990; Waller 2004; Ziliak and 287 

McCloskey 2008), so a representative sample of the data set was used instead for hypothesis testing. The 288 

number of points generated was proportional to the area of each stability class, with the smallest class within a 289 

paddock always having a minimum of 30 points. These randomised points were generated in ArcGIS 10.2 290 

across all four stability classes in each paddock. Crop and pasture TGDM and CV values for these points were 291 

extracted in ArcGIS. For each paddock, analyses were conducted on that paddock’s random dataset to 292 

investigate the relationships between the pattern of crop and pasture production across all four classes (HS, 293 

HUS, LS and LUS). Since the stability indices were categorical data, a Chi-squared analysis was used. The 294 

Kruskal–Wallis one-way ANOVA test (Kruskal and Wallis 1952) was used to test for differences between 295 

stability classes using the R statistical package (v. 3.3.3) (R Core Team 2017). The Kruskal–Wallis test 296 
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computes a test statistic and P-value (assuming a Chi-square distribution) as well as pairwise comparisons at a 297 

specified alpha level (α=0.05 in this case). For the Kruskal–Wallis tests, the null hypothesis was that the 298 

medians of all classes were equal, and the alternative hypothesis was that the population median of at least one 299 

class was different from the population median of at least one other class. The following combinations were 300 

tested for each paddock: crop yield, pasture yield, crop yield CV, pasture yield CV, crop yield minus pasture 301 

yield, and crop CV minus pasture CV, with the stability classes as the categorical variable in each case. Yield 302 

differences (crop yield minus pasture yield) at a point were tested to see if the differences between crop and 303 

pasture medians were significant. If both crop and pasture were responding in the same way at a point (highly 304 

correlated) then it would be expected that they would not be significantly different. If the crop and pasture 305 

values were highly variable then a significant difference between them would be expected. 306 

 Based on our hypothesis that the data acquired across both crop and pasture phases could be used to create a 307 

single index of productivity that described the spatial variation in, and temporal stability of yields within a 308 

paddock over time, the expectation was that: (i) the medians of the standardised values for the high-yielding 309 

classes (HS and HUS) would be similar as would yields in the two low-yielding classes (LS and LUS) but that 310 

the yield medians between both groups (HS, HUS) and (LS, LUS) would differ and (ii) for the stability measure 311 

(coefficient of variation), that the medians of CV for the stable classes (HS and LS) would be similar as would 312 

the unstable classes (HUS and LUS) and that the CV medians between both groups (HS, LS) and (HUS, LUS) 313 

would differ.  314 

Correlation analysis of point values for crop grain yield and pasture dry matter production 315 

To see if there was any relationship between crop and pasture yields at a point, a correlation analysis was 316 

conducted using JMP 12.2 (SAS Institute Inc, Cary, North Carolina,USA) on between-year crop yields and 317 

pasture TGDM yields for each paddock. As not all of the datasets were from normal distributions, a non-318 

parametric Spearman’s rho analysis was used (Corder and Foreman 2014). 319 

Results 320 

Electromagnetic Induction Surveys 321 

Figures 2 and 4 show soil textures as identified by the farm owners of “Milroy” and “Grandview” respectively, 322 

based on their knowledge and experience with their paddocks. Figures 3 and 5 show the spatial distributions of 323 

the ECa data for “Milroy” and “Grandview” respectively. The differences in mean ECa likely reflect the 324 

contrasting soil textures between the highly weathered, sandy soils at “Milroy” and the finer-textured clays at 325 

“Grandview”. The CVs for the data sets were much higher for “Milroy” (82% shallow; 104% deep) compared to 326 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



“Grandview” (60% shallow; 9.7% deep) (Table 5), suggesting much greater soil variability at the “Milroy” sites, 327 

although there also appears to be considerable variability in the shallow (0-0.38 m) region at “Grandview”. At 328 

“Grandview”, the 0-0.38 m and 0-0.75 m ECa maps (Fig. 5a, b resp.) showed similar patterns of spatial 329 

distribution. At “Milroy” the percentage sand was negatively correlated with ECa, ECa 0-0.5 m showed a 330 

stronger correlation with sand content than ECa (0-1 m) (data not shown). There was also a reasonable 331 

similarity between the soil texture zones identified by the “Milroy” farm owner (Fig. 2), particularly with the 332 

ECa 0-1 m map (Fig. 3b). At “Grandview” there was a strong positive correlation between ECa 0-0.38 m values 333 

and clay content at 0-0.1 m and 0.1-0.5 m at “Grandview” (data not shown). The soil texture properties in lower-334 

lying areas with the highest conductivity at “Grandview” corresponded with sodosols, with pockets of vertosols 335 

(Isbell 2016). There was a strong resemblance between the soil texture zones identified by the owner of 336 

“Grandview” for paddock GV39 (Fig. 4) and the ECa 0-0.5 and 0-1 m maps (Fig. 5a, b). 337 

 Soil sampling and testing   338 

A summary of results from the soil analysis from CSBP is provided in Table 5. The results indicate that the 339 

majority of soils in the “Milroy” paddock had more than 70% sand and less than 20% clay throughout the 340 

profile (0-0.6 m depth), and  were described as either sandy, sandy loam or duplex (sand over clay) soils. These 341 

high sand percentages are typical of soils in the south-west of Western Australia. Clay content increased 342 

marginally with depth to 0.6 m; average clay content ranged from 13 to 20%. The range of soil test phosphorus 343 

concentrations (0-0.1m) across the “Milroy” paddock was 25 to 55 mg/kg, with an average Colwell P-value of 344 

45.6 mg/kg (Table 5). The lowest P-value in M41 was in the lowest part of the paddock, in deep sand. These 345 

values were above the critical range of 18-22 mg/kg for wheat/canola (Peverill et al. 1999; Reuter and Robinson 346 

1997) and generally above the 30 mg/kg for pastures (Gourley et al. 2007; Reuter and Robinson 1997). The 347 

variation in Colwell P values reflects the variability in soils at “Milroy”, from deep sands to sandy loams/gravels 348 

(Fig. 2). 349 

At “Grandview”, subsoils were 50–60% clay. In the more elevated sections of the paddock, the “Grandview” 350 

soils (0-0.1 m) had more than 35% clay. Soils in the lower-lying areas had up to 60% clay (0-0.1 m). There were 351 

differences in soil texture between the tops of hills, mid-slopes and points of lowest elevation (Fig. 4).  For 352 

“Grandview” Colwell P concentrations (0-0.1 m) ranged between 29 and 72 mg/kg (Table 5). The highest soil 353 

test P-value in GV39 was associated with a cattle camp and feed trough, indicating that there may have been 354 

some nutrient transfer occurring. Lower phosphorus levels in GV39 were associated with increased elevation. 355 

The mean soil P-value for GV39 was 45 mg/kg, well above the critical P-values for both crops and pastures.  356 
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Crop yield mapping 357 

Crop yield maps for “Milroy” and “Grandview” paddocks are shown at Fig. 6.  The patterns of spatial variation 358 

in “Milroy” paddock M41 for 2008 (Fig. 6a) and 2014 (Fig. 6b) were similar. During the 2014 season 233 mm 359 

of rain fell between July and November, resulting in higher average yields across the paddock than in 2008. At 360 

“Grandview”, the period under crop 2006-2009 was impacted by the Millennium Drought (Heberger 2011; van 361 

Dijk et al. 2013), with GSR in 2006 being 41% of mean GSR, 53% in 2007, 43% in 2008 and 68% in 2009.  362 

Table 5 Summary of soil texture and selected soil chemistry data for “Milroy” and “Grandview” paddocks. The 363 

table shows the range of values obtained, from lowest to highest in each case, from CSBP soil tests 364 

 Depth 

(m) 

Sand 

(%) 

Clay 

(%) 

Gravel 

(%) 

pH 

(CaCl2) 

Colwell P 

(mg/kg) 

Mean ECa 

mS/m 

CV ECa          

% 

Paddock         

 

M41 (n=11) 

 

0-0.1 

 

76  

 

18 

 

0 

 

4.7-5.1 

 

25-55 

 

0-0.5 m           

 

 0.1-0.3 80 13 0-5 4.4-4.9 6-12 7.6 82 

 0.3-0.6 73 20 0-5 4.5-5.9 24 0-1 m 

12.7 

 

104 

         

GV39 (n=6) 0-0.1 30-53 35-60 < 5 5.2-6.3 29-72 0-0.38 m                 

 0.1-0.5 28-35 50-60 < 5 4.8-6.4 7-20 16.4 

0-0.75 m 

79.5 

60 

 

9.7 

n = the number of soil sampling sites in each paddock 365 

Total annual rainfall at “Grandview” in 2006 was 217 mm, so little residual moisture was available for the 2007 366 

season, which was reflected in the very poor crop yield in 2007 (Fig. 6e) compared to the 2008 and 2009 367 

seasons (Fig. 6f, g).  368 

A higher proportion of the paddock yielded poorly, although some areas still recorded reasonable yields of 369 

around 4 t/ha. Yield variation within the paddock was apparent, even during the drought years. When GSR was 370 

closer to the mean (2009), the lower-lying parts of the paddock also yielded well (Fig. 6g).  371 

 372 

 373 
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 374 

Fig. 2 Soil map created from farmer knowledge (Murray Hall, pers. comm.) for “Milroy” paddock M41.            375 

sandy loam,    friable sand,     gravels,     sandy duplex (sodic),     sand on clay loam,     deep sand. Elevations 376 

are in metres at 5 m intervals 377 

 378 

          379  

Fig. 3 Maps of soil ECa (mS/m) from EMI scans of “Milroy” paddock M41 conducted in October 2013. (a) 0-0.5 380 

m and (b) 0-1 m  381 

 382 

 383 

Fig. 4 Soil map created from farmer knowledge for “Grandview” paddock GV39 (Adam Inchbold, pers. 384 

comm.).     sandy clay loam over medium clay,     sandy clay loam over sodic fine clay,     clay loam over fine 385 

clay. Elevations are in metres at 5 m intervals 386 

 387 

  

(a) (b) 
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  388 
 389 

 390 

 391 

 392 

 393 

 394 

Fig. 5 Maps of soil ECa (mS/m) from EM38 scans of “Grandview” paddock GV39 conducted in October 2013. 395 

(a) 0-0.38 m and (b) 0-0.75 m. Scans were conducted with the EM38 in horizontal mode (ECah)  396 

Mapping pasture green herbage mass in pastures 397 

Pasture biomass maps are shown for “Milroy” (Fig. 6c, d), and “Grandview” (Fig. 6h, i). “Milroy” paddock 398 

M41 had a similar pattern in spatial variation of TGDM distribution in both September 2012 and 2013 (Fig. 6c, 399 

d). The difference in overall biomass between the two years was due to the paddock being destocked at the time 400 

of scanning in 2013, resulting in more standing pasture than in 2012. The south-eastern area of the paddock 401 

shows low TGDM. The pasture here was dominated by capeweed (Arctotheca calendula L.). There were also 402 

salt affected areas on the south-eastern edge of the paddock, with sparse vegetation giving a very low TGDM. 403 

The remainder of the paddock was dominated by subterranean clover (Trifolium subterraneum L.), with some 404 

annual ryegrass (Lolium rigidum L.) and capeweed. At “Grandview” in 2012 (Fig. 6h), the better TGDM yields 405 

occurred in areas of higher elevation e.g. the southern part of paddock GV39. High rainfall preceded the 2012 406 

growing season, with nearly 350 mm recorded from late February to early March. However, “Grandview” then 407 

received only 218 mm GSR, which was below average. GSR in 2013 was a little closer to the long-term mean at 408 

254 mm, but the June–September cumulative rainfall was also higher in 2013 (184 mm) than 2012 (122 mm), 409 

leading to higher pasture biomass and NDVI values at the time of sampling (Fig. 6i).  410 

Correlation between Crop CircleTM NDVI and pasture biomass (TGDM) 411 

The NDVI was considered the appropriate vegetation index to use to develop the pasture calibration equations 412 

for total green dry matter (TGDM) as it generated the lowest root mean square error values compared to the 413 

other indices tested (data not shown). The NDVI is the most widely used vegetation index (Ollinger 2011; 414 

Tucker 1979), as it is strongly correlated with vegetation biophysical properties. Regression of the Crop 415 

CircleTM NDVI scan values at each of the 25 pasture harvesting sites in each paddock against the actual TGDM 416 

harvested at each site in 2013 and derived calibration equations are shown for “Milroy” M41 (Fig. 7a) and 417 

“Grandview” GV39 (Fig. 7b). In both cases, a non-linear relationship best represented the capacity of NDVI to 418 
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predict TGDM, with R2 values of 0.88 at “Milroy” and 0.81 at “Grandview”. Saturation of the NDVI signal at 419 

high biomass levels can be seen at both “Milroy” (Fig. 7a) and “Grandview” (Fig. 7b) where increasing TGDM 420 

values above around 3000kg/ha does not result in an increase in NDVI. This effect has been widely documented 421 

in the literature, especially for agricultural landscapes (Glenn et al. 2008; Mutanga and Skidmore 2004; 422 

Thenkabail et al. 2000), resulting in non-linear relationships between NDVI and biomass (Edirisinghe et al. 423 

2011; Huete et al. 2002; Mutanga and Skidmore 2004; Viña et al. 2011). 424 

Spatial trend maps 425 

The standardised yield shows, at any point, in any one year, how the yield differs from the paddock mean 426 

(100%). The standardised data across years has been averaged and classified into four yield zones in relation to 427 

the relative percentage difference from the paddock mean (100%) using the yield data distribution quartiles to 428 

define the four yield classes.  The process used to combine crop yield maps (Fig. 8a, b) and pasture TGDM 429 

maps (Fig. 8f, g) to create spatial trend maps over time for crop phases (Fig. 8c) and pasture phases (Fig. 8h) is 430 

illustrated using data from “Milroy”. The same process was used to create spatial trend maps for “Grandview”. 431 

Temporal variability maps 432 

Whilst the spatial variability maps show the consistently high and low yielding areas of the paddocks over time 433 

at “Milroy” and “Grandview”, the temporal variability maps show how stable in time these crop and pasture 434 

yields were. The maps for temporal variability of standardised yield for crop and pasture are presented for 435 

“Milroy” paddock M41 (Fig. 8d, i) respectively (“Grandview” not shown). The CV shows a low value if a 436 

particular area of the paddock has a yield value that was always close to the mean. These areas can be 437 

considered to have stable yield over time. If the yield in other areas of the paddock sometimes approaches the 438 

mean and sometimes deviates from it, then these can be regarded as areas of temporally unstable yield. The 439 

percentage of the paddock area across both sites in the most stable class (CV 0-10%) was >58%, with the 440 

exception of “Grandview” in crop (21%) (Table 6). The area of the paddock in the highly unstable category (CV 441 

>40%) in pasture phases ranged between 1% (“Grandview”) and 6% (“Milroy”) and in crop between 3% 442 

(“Milroy”) and 7% (“Grandview”). 443 

 444 
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Crop Yield (t/ha) Pasture TGDM yield 
(kg/ha) 

Fig. 6 Crop yield maps and pasture biomass maps for research paddocks. “Milroy” paddock M41: (a) crop 2008 446 

and (b) 2014; (c) pasture Sept 2012 and (d) Sept 2013, “Grandview” paddock GV39: (e) crop 2007, (f) 2008 and 447 

(g) 2009; (h) pasture Sept 2012 and (i) Sept 2013 448 

 449 

 
 

Fig. 7 Regression of Crop Circle normalised difference vegetation index (NDVI) values against total green dry 450 

matter (TGDM) determined by direct harvesting for “Milroy” paddock M41 (y=45.927e4.3528x; R2 = 0.884) and 451 

“Grandview” paddock GV39 (y=6.416e548x; R2 = 0.807) in September 2013  452 

Stability Index maps (spatial and temporal trend maps) 453 

The Stability Index maps for crop and pasture phases are shown in Fig. 9a (crop) and 9b (pasture) for “Milroy” 454 

and Fig. 10a (crop) and 10b (pasture) for “Grandview”. In these maps, the data from the spatial trend classes 455 

(low yielding, LY; below average, BA; above average, AA; and high yielding, HY) and temporal stability maps 456 
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(CV ranges) have been combined and categorised into four new classes—high or low yielding depending on 457 

whether the data value was above or below the spatial mean, and stable or unstable depending on whether the 458 

data value was above or below the stability threshold (Table 3). Fig. 9c shows the overall paddock stability map 459 

for “Milroy” M41 which combines the crop (Fig. 9a) and pasture (Fig. 9b) spatial trend and temporal stability 460 

data into one map. Fig. 10a-c shows the same process for “Grandview”. The maps show areas of the paddock 461 

where the yields for both crop and pasture, over time, responded in a similar fashion—either high yielding and 462 

stable (HS), high yielding and unstable (HUS), low yielding and stable (LS) or low yielding and unstable (LUS). 463 

The areas of the map that remain uncoloured represent other possible combinations of yield and stability other 464 

than the four defined zones. For each paddock, the “high and stable” class ranged from 68% of total grid points 465 

analysed at “Milroy” to 54% at “Grandview (Table 7). The “low and unstable” class accounted for 21% of grid 466 

points analysed at “Milroy” to 19% at “Grandview” (Table 7).  Data points for each paddock that didn’t fall into 467 

one of the four Stability Index categories (for example, points that were temporally stable - CVsi < mean CV, 468 

but high yielding in one phase and low in another, or temporally unstable - CVsi > mean CV, but high yielding 469 

in one phase and low in another), were combined to form maps for “Milroy” (Fig. 11a) and “Grandview” (Fig. 470 

11b) respectively, clarifying the nature of uncategorised areas. 471 

Correlation of crop and pasture values at a point 472 

At “Milroy”, the Spearman’s rho correlation revealed a moderately strong, statistically significant relationship in 473 

paddock M41 between the standardised values for crop yield and pasture TGDM for the randomised points 474 

(ρ=0.66, P<0.01, N=262, Table 8). At “Grandview” paddock GV39, there was also a statistically significant 475 

relationship for Spearman’s rho correlation between the standardised values for crop yield and pasture TGDM 476 

for the randomised points (ρ=0.66, P<0.01, N=192, Table 8). These significant results confirm the validity of the 477 

method used to develop the combined crop and pasture stability maps. 478 

Kruskal-Wallis analysis 479 

The results of the Kruskal–Wallis one-way ANOVA (Table 8) showed that at both sites the Stability Index 480 

categories for yield (high and low) partitioned the yield medians into high yielding categories (HS & HUS) and 481 

low yielding categories (LS & LUS) and these differences were significant (p< 0.01). This was also the case 482 

when yield differences (crop yield minus pasture yield) were tested.  For temporal stability, crop and pasture 483 

stability medians did not always show significant differences between stable and unstable areas, but the median 484 

values were grouped correctly.  For example, crop CV median values at “Grandview” for stable were close to 485 

each other (12.0 and 16.7) and distant from the unstable category (29.4 and 30.5). The same occurred with crop-486 
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pasture yield differences at “Grandview”, with yield medians falling into high (10.1 and 13.8) and low (14.9 and 487 

17.3) and stability medians grouped stable (6.3 and 12.3) and unstable (19.1 and 17.2). The results for the 488 

pasture phase temporal stability analysis were much less consistent. There were no paddocks where the pasture 489 

CV category medians differed significantly and “Grandview” GV39 was the only paddock where the values of 490 

the medians were grouped into stable and unstable categories. The impact of livestock grazing as a possible 491 

cause of these pasture effects is discussed further in the discussion. Although the Kruskal–Wallis test for the 492 

temporal stability aspect (CV) of the Stability Index did not always show a significant difference between the 493 

medians of the stable and unstable categories, the results provide strong evidence to support the validity of the 494 

methodology used to define and allocate yield spatial variability data among the Stability Index categories.  495 

 496 

 497 

 498 

 499 

 500 

 501 

 502 

 503 

 504 

 505 

 506 

 507 

 508 

 509 

 510 

 511 

 512 

 513 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 514 

 515 

 516 

 517 

 518 

 519 

 520 

 521 

 522 

 523 

 524 

 525 

 526 

 527 

 528 

 529 

 530 

 531 

 532 

 533 

 534 

 535 

 536 

 537 

 538 

Fig. 8 Diagram illustrating the creation of Stability Index maps for crop and pasture phases for “Milroy” 539 

paddock M41. Standardised yield maps (a) and (b) for crop, (f) and (g) for pasture total green dry matter 540 

(TGDM), are combined to create spatial trend maps (c) and (h), which show the standardised yields (crop and 541 

pasture TGDM) over time      = low yielding;     = below average;     = above average;     = high yielding.  542 

Combining the features found in the spatial trend maps with the temporal stability maps (d) and (i) for crop yield 543 

and pasture TGDM respectively     = 0-10%,     = 11-20%,      = 21-30%,      = 31-40%,      = >40%,  produces 544 

the Stability Index maps for crop (e) and pasture (j)      = HS,      = HUS,       = LS,       = LUS   545 

 546 
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Table 6 Temporal variability of production (based on CV) for “Milroy” and “Grandview” paddocks by 548 

percentage of paddock affecteda  549 

 CV categories (%) 

Paddock     0-10 11-20 21-30 31-40 >40 

“Milroy”      

M41 crop 59 25 9 4 3 

M41 pasture 65 17 8 4 6 

“Grandview”      

GV39 crop 21 34 25 14 7 

GV39 pasture 58 29 9 3 1 
a 0-10% is the most stable category and >40% the least stable  550 
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     Fig. 9 Combining the Stability Index maps in “Milroy” paddock M41 for crop (a) and pasture (b) phases provides the overall paddock Stability Index map (c), with four 551 

zones:      high yielding and stable (HS);     high yielding and unstable(HUS);      low yielding and stable (LS);      low yielding and unstable (LUS). The areas of the map that 552 

remain uncoloured represent other possible combinations of yield and stability other than the four defined stability zones  553 

 554 

Fig. 10 Combining the Stability Index maps in “Grandview” paddock GV39 for crop (a) and pasture (b) phases provides the overall paddock Stability Index map (c), with 555 

four zones:      high yielding and stable (HS);     high yielding and unstable (HUS);      low yielding and stable (LS);      low yielding and unstable (LUS). The areas of the map 556 

that remain uncoloured represent other possible combinations of yield and stability other than the four defined stability zones 557 
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 558 

(a) 

 

 

 (b) 

   559 

Fig. 11 Stability Index maps for “Milroy” paddock M41 (a) and “Grandview” paddock GV39 (b) showing all 560 

data points that are either: high yielding and stable (    ), high yielding and unstable (    ), low yielding and stable 561 

(   ), low yielding and unstable (   ), high/low yielding and stable (   ), high/low yielding and unstable (   ), for 562 

both crop and pasture.  563 

 564 

Table 7 Stability Index categories as a percentage of paddock area by crop, pasture and crop and pasture 565 

combined, for “Milroy” and “Grandview” a  566 

 Stability Category 

Paddock HS HUS LS LUS 

“Milroy”     

M41 crop 45 11 21 23 

M41 past 52 5 17 26 

M41 combined 68 2 9 21 

“Grandview”     

GV39 crop 38 21 13 28 

GV39 past 31 24 22 23 

GV39 combined 54 13 14 19 
a The combined values are the percentages of the paddock classified as either HS, HUS, LS, or LUS, not of total 567 

paddock area 568 

 569 
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Table 8 Results from the Kruskal–Wallis one-way ANOVA test for differences between the stability zones based on crop and pasture yield or CV for “Milroy” and 570 

“Grandview” paddocks. Values show the zone medians calculated by the Kruskal–Wallis test and indicate where a significant difference occurred between at least one 571 

mediana,b 572 

PADDOCK HS HUS LS LUS χ2 P ρ P 

“MILROY” M41 (N=262)        

Correlation: crop yld x pasture yld       0.66 <0.01 

Crop yield 110.5a 112.7a 85.6b 78.3b 193.18 <0.01   

Pasture yield 116.8a 105.9a 91.3b 82.8b 99.29 <0.01   

Crop CV 5.2a 18.7b 5.8a 25.2c 177.09 <0.01   

Pasture CV 4.9a 7.3b 11.0bc 14.9c 53.17 <0.01   

Crop yld–Pasture yld 10.0a 7.5a 15.6b 17.2b 25.68 <0.01   

Crop CV–Pasture CV 3.2a 11.4bc 6.6c 14.8b 54.81 <0.01   

“GRANDVIEW” GV39 (N=192)        

Correlation:crop yld x pasture yld       0.66 <0.01 

Crop yield 114.8a 119.2a 77.2b 74.3b 138.9 <0.01  <0.01 

Pasture yield 112.1a 105.9a 88.4b 86.4b 57.84 <0.01  <0.01 

Crop CV 12.0a 29.4b 16.7c 30.5b 143.09 <0.01  <0.01 

Pasture CV 7.8ns 12.2ns 7.6ns 10.4ns 7.34 0.06  <0.01 

Crop yld–Pasture yld 10.1a 13.8ab 14.9b 17.3b 11.36 0.01  <0.01 

Crop CV–Pasture CV 6.3a 19.1b 12.3c 17.2bd 54.45 <0.01  <0.01 

a
 Median values with different letters indicate that the SI zone medians are significantly different. ns = not significant  573 

b The correlation between crop yield and pasture TGDM was also tested with Spearman’s rho. HS = high and stable yielding zones, HUS = high and unstable, LS = low and 574 

stable and LUS = low and unstable.  is the Chi-squared test statistic for each Kruskal–Wallis test, ρ is the Spearman’s correlation coefficient and P is the related probability. 575 

N is the number of points in the sample 576 
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Discussion  577 

Spatial and temporal variability and the Stability Index – strategic versus tactical decisions 578 

Being able to identify areas of a paddock that exhibit consistent behaviour across all rotations means that a farm 579 

manager is in a better position to make longer-term strategic decisions regarding appropriate cropping and 580 

grazing management strategies, targeted amelioration of soil/subsoil constraints or variable nutrient 581 

management. It is physically difficult and expensive to accurately map the extent of within-paddock soil 582 

variability at the spatial resolution required by precision agriculture methodologies using conventional 583 

laboratory-based soil testing techniques alone. The objectives of this research were to (1) use a proximal NDVI 584 

sensor to characterise spatial variability of production in the pasture phase of mixed farming systems; (2) to 585 

compare within-paddock spatial variation in crop grain yield and pasture biomass production and (3) to develop 586 

a methodology to create a single map of spatial variation of crop yield and pasture biomass production at a 587 

point, across a paddock, (“Stability Index”). It was hypothesised that the use of high resolution data could 588 

identify spatial variation in production across crop and pasture rotations and that the data could be used to create 589 

a single index of productivity that described the spatial variation in, and temporal stability of, both crop grain 590 

and pasture biomass yields within a paddock over time – the “Stability Index”. All three objectives were met.  591 

The Kruskal-Wallis analysis provided strong evidence to support both the hypothesis and the validity of the 592 

methodology used to split the yield spatial variability data among zones. That is, the methodology partitioned 593 

both crop and pasture yields in the same areas in each paddock, although the impacts of livestock grazing during 594 

the pasture phase tend to confound temporal stability in comparison to the cropping phase. At both properties, 595 

the majority of the paddock, by area, was classified as stable in production over time. At “Milroy”, the stable 596 

area (HS + LS) was 77% of the paddock and at “Grandview” 68%.  597 

While proximal soil sensing technologies alone, (such as EMI), cannot replace the detail provided by manual 598 

soil sampling in the field, both techniques could be used together to identify spatial and temporal variability and 599 

its potential causes, to inform strategic planning for soil management at a given site. Although highly mobile 600 

nutrients like nitrogen need to be managed in-season during cropping phases in response to in-season soil 601 

moisture and rainfall (Basso et al. 2012), less mobile nutrients such as P, K and S can be managed with a longer-602 

term view, based on the temporal variance reflected in stability zones In this way, the different outcomes 603 

required from a crop (maximising grain yield) and pasture (maximising digestible biomass) phase can be 604 

managed together and monitored at the sub-paddock scale. In this context, it was anticipated that the stability 605 

zones might be useful for identifying potential nutrient variations across a paddock and provide the opportunity 606 
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to better manage decisions around fertiliser application. Areas of a paddock that have different soil textures and 607 

nutrient levels can have differing maintenance fertiliser requirements and might benefit from differential 608 

fertiliser treatment. Conventional wisdom suggests that high and stable zones could have higher soil fertility, but 609 

there is evidence (Price 2006) that high and stable zones could show lower nutrient levels than the low and 610 

stable areas, as greater nutrient removal would occur from the high and stable areas in the form of crop and 611 

animal product exports. When the paddock Stability Index maps were overlain on the soil test results no 612 

definitive trends were apparent. Unfortunately, the limited number of soil tests precluded detailed analyses of 613 

the impacts of soil chemical / textural factors. A better understanding of how the spatial patterns in soil 614 

properties may have impacted on yield variations could have been achieved with better targeted soil sampling. 615 

However, the soil testing was undertaken for earlier research, prior to the definition of the SI zones and did not 616 

specifically target SI zones which probably contributed to the low correlation between soil chemistry and SI 617 

zones.  618 

At “Milroy” paddock M41, the areas identified as high and stable (HS Stability Index - dark green; Fig. 8) are 619 

mainly in the central section of the paddock, associated with finer-textured loamy soils. This section of the 620 

paddock is sloped, rising from south to north, with an elevation variation of around 10 metres (Fig. 2). The 621 

pastures in this zone are dominated by subterranean clover. It was likely that the areas dominated by 622 

subterranean clover in the pasture phase may have contributed to improved fertility through biologically fixed 623 

nitrogen. The small areas categorised as “low and stable” (LS – light green; Fig. 9c) at “Milroy” comprise sand 624 

over clay soils (Fig. 2). These are areas of low but stable production. The “low and unstable” areas (LUS – red; 625 

Fig. 9c) largely comprise “problem” soils - non-wetting gravels and sodic sandy duplex soils occurring around 626 

the edges of the paddock. The sodic soils border a saline drainage line on the southern boundary. Crop yields 627 

here are low, but in the pasture phase, there can be a reasonable amount of weedy biomass growing, resulting in 628 

an unstable production pattern between crop and pasture phases. The LUS areas comprise 21% of the paddock 629 

area that was classified (Table 7), which could be considered significant in management terms, requiring further 630 

investigation.  631 

At “Grandview, there were differences in soil texture between the tops of hills, mid-slopes and points of lowest 632 

elevation in GV39. On the tops of the hills, the topsoil tended to be stonier sandy clay loams, transforming down 633 

the slope to sandy clay loam over clay (Fig. 4). The southern half of the paddock, which includes the HS zone 634 

(dark green; Fig 8c), has higher elevation and sandy-loam over clay soils. The LUS areas (red; Fig. 10c) are on 635 

the margins (fence-lines) of the paddock, where existence of trees could be affecting production, and in the 636 
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lower-lying (northern) parts of the paddock dominated by fine textured soils with scattered large trees. The farm 637 

owner also reported that the elevated areas of the paddock, although of lower inherent fertility, would yield well 638 

with sufficient fertiliser application (Adam Inchbold, pers. comm.). Previous research at “Grandview” (Inchbold 639 

et al. 2009) reported that sodosols on the lower slopes always had surplus soil water, leading to the conclusion 640 

that rooting depth in these soils was limited by factors other than moisture (e.g. salinity or elevated 641 

exchangeable sodium percentage (ESP) in subsoils) (Kirkegaard and Lilley 2007; Lilley and Kirkegaard 2016), 642 

which corresponds with the SI results. The farm owner reported little water extraction below 0.6 m on these 643 

soils (Adam Inchbold, pers. comm.).  644 

Influence of livestock grazing on biomass 645 

Grazing livestock create specific spatial patterns of pasture biomass utilisation which affect the spatial 646 

heterogeneity of the paddock and bring about significant nutrient redistribution (Laca 2009; Murray et al. 2007; 647 

Rook et al. 2004; Schellberg et al. 2008; Schnyder et al. 2009; Trotter et al. 2010a). For example, as noted in the 648 

results section, the highest soil test P value in “Grandview” paddock GV39 was associated with a stock camp 649 

and feed trough. These effects are compounded from year to year by stocking rate decisions of managers, 650 

pasture regrowth, and often highly variable species composition within complex swards over time (Bailey and 651 

Provenza 2008; Chapman et al. 2007; Soder et al. 2009). These factors combine to affect the spatial 652 

heterogeneity of a paddock during the pasture–livestock phase compared to grain yield when the paddock is in 653 

crop. As a result, it is not always going to be clear if a particular part of a paddock happened to be low in pasture 654 

TGDM production because nothing much grew there, or because the vegetation was grazed off, or there was a 655 

change in species dominance affecting the NDVI reflectance values. This was evident in the Kruskal–Wallis 656 

tests (Table 8), where there were a number of statistically non-significant results associated with the pasture 657 

CVs. The overall spatial and temporal utilisation of a paddock by livestock is going to remain unclear without 658 

acquiring data through GPS tracking (Trotter et al. 2010a, 2010b). Meta-analysis of data from livestock fitted 659 

with GPS tracking collars and accelerometers could identify spatial preference, grazing behaviour and 660 

distribution of animals within a paddock and help to identify animal impacts from soil texture / chemistry 661 

effects. This also applies to the grazing of a crop in a ‘grain & graze’ system (Price and Hacker 2009) as well as 662 

when the paddock is in pasture.  663 

Uncategorised areas of the paddocks 664 

There are areas of the paddock that remain uncategorised with the SI process, where production can be stable, 665 

but high yielding in one phase and low yielding in the other. For example, an area of a paddock can be 666 
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temporally stable (ie CVsi < mean CV; Table 3), but high yielding in crop and low yielding in pasture. This 667 

could result from highly productive areas of the paddock when in pasture being heavily grazed by stock, and 668 

thereby giving a low TGDM yield when the paddock was measured. At “Milroy”, these areas – “high-low 669 

stable” (HLS - blue areas in Fig. 11a) are mostly on the margins of the darker green HS zones and a section on 670 

the south-western boundary. The area on the southwest boundary comprises deep sands of low fertility, 671 

dominated by broadleaf weeds (capeweed and Erodium spp.). This area also comprised a significant proportion 672 

of the paddock that remains uncategorised. Pasture quality and livestock residence times on capeweed can be 673 

highly variable, and can impact estimates of TGDM in these areas, particularly if plants are flowering, as the 674 

yellow flowers can impact NDVI values (Behrens et al. 2006; Shen et al. 2009; Shen et al. 2010). The other 675 

possibility in the uncategorised zones was high yielding in one phase and low yielding in the other while 676 

unstable in yield (distant from the mean) and unstable in time (ie CVsi > mean CV; Table 3). These “high-low 677 

unstable” areas (HLUS - yellow in Fig. 11a) tend to be on the margins of the LUS (red) zones. The soil textures 678 

in these areas are coarse and variations in yield between crop and pasture may be driven by variations in rainfall 679 

amount and timing as they will run out of water first in dry years.  680 

As with “Milroy” when the uncategorised parts of the “Grandview” paddock were included (Fig. 11b), the high 681 

or low but stable areas (HLS-blue; Fig. 11b) tended to be associated with, and on the margins of, the high and 682 

stable areas (HS-dark green; Fig. 11b) areas. The high or low but unstable areas (HLUS-yellow; Fig. 11b) were 683 

in the lowest-lying part of the paddock and tended to be associated with the low and unstable (LUS) zones. 684 

There was a band of very high ECa that extended from the north-west corner of the paddock to the LUS area at 685 

the middle of the eastern boundary, where soil ESP (0.1-0.5 m) was very high (10%) (data not presented). This 686 

may account for the wide variation in Stability Indices in this part of the paddock, encompassing LS, LUS, HLS, 687 

HLUS and some uncategorised areas. The HLS areas described above for both paddocks that adjoin the HS 688 

zones could also be affected by livestock grazing. 689 

Practical benefits of the Stability Index classifications 690 

The results of this research show that it is possible, using readily available precision technologies, to correlate 691 

and map the responses of both crop and pasture yields over time within the same paddock at the sub-paddock 692 

scale. The analysis addresses a number of factors that impact on the objectives and forward planning decisions 693 

of the managers of mixed-farming systems. Spatial variation in yield is not always consistent, but influenced by 694 

seasonal variations and often temporally unstable (McBratney et al. 1997; Wong and Asseng 2006), opening ‘a 695 

Pandora’s box of uncertainty’ for the agronomic interpretation of yield maps (Cook and Bramley 2001). By 696 
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identifying commonality in spatial and temporal variability across both crop and pasture phases through the 697 

Stability Index, some of this uncertainty is reduced.  If farm managers can be confident about what is happening 698 

at the whole of system scale in both crop and pasture phases in a paddock, it enables them to make management 699 

decisions with greater confidence. Using the stability zones to create ‘gross margin’ maps of each paddock 700 

(Blackmore 2000; Whelan and Taylor 2013) can assist in optimising financial inputs and returns, although this 701 

was not explored here. If the spatial trend indicates that lower yielding areas are sufficiently significant in size to 702 

warrant attention, then these areas can be investigated and the cause(s) ameliorated. If the cause cannot be 703 

addressed (e.g. salinity), reducing inputs to match average yields can be explored. For example, variable rate 704 

fertiliser P decisions in all paddocks at “Grandview” are currently based solely on P removal in grain during the 705 

cropping phase. The pastures receive a blanket rate of P. The farm owner at “Grandview” has indicated that 706 

based on the results of this research, he would be interested in implementing a variable rate fertiliser strategy 707 

during pasture phases also, to complement his cropping strategy. Either way, the stability zone maps provide the 708 

property manager with an indication on whether focussing on spatial or temporal management is the best 709 

strategy, especially if informed with gross margin maps.   710 

Conclusions 711 

The analysis presented here is unique in that it includes both crop and pasture yield data from within the same 712 

paddock. The Stability Index has the potential to fill significant knowledge gaps for the farm manager, who 713 

currently only has crop yield data to make decisions about paddock management. Previous attempts to create 714 

paddock stability zones (Blackmore (2000), Blackmore et al. (2003), Marques da Silva (2006), Marques da 715 

Silva et al. (2008) and Xu et al. (2006)) have been restricted to either single crop or grassland paddocks, but 716 

never for paddocks that include a sequence of both crop and pasture rotations in a mixed farming system. With 717 

the benefit of hindsight, additional soil test data based on the SI zones would have been invaluable to help 718 

identify and possibly better characterise some of the differences between zones outside of the “HS” areas and 719 

possibly reduce the extent of un-categorised parts of the paddocks. The research identified that there were some 720 

exceptions and uncertainties around the measurement of spatial variation and temporal stability in pasture 721 

phases. In the short term, it can be difficult to differentiate between variations in temporal stability of pasture 722 

growth brought about by rainfall, soil moisture and soil nutrient supply from those caused by grazing. As the 723 

size of Australian farm holdings increases (Australian Bureau of Agricultural and Resource Economics 2017, 724 

http://apps.daff.gov.au/AGSURF/), not all paddocks can be sown at the optimal time. Being aware of how 725 

different parts of a paddock are responding and the extent of those areas in both crop and pasture phases through 726 
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the use of the paddock stability indices can inform decisions about the order and timing of paddock sowing 727 

when faced with a time-constrained sowing window. The methodology and concepts described and 728 

demonstrated here open the way for further research to identify a new field of “whole of system” precision 729 

management in mixed farming systems. For example, further research into the effects of livestock grazing 730 

impacts on spatial variability of pasture production through the use of tracking collar data would help to clarify 731 

issues around overall spatial and temporal utilisation of a paddock by livestock. A longer term on-farm trial of 732 

the stability index to inform decisions about the mix of crop and pasture rotations on a paddock by paddock 733 

basis, optimal crop and pasture sequences, which paddocks are better suited to either cropping or pasture and 734 

pasture species selection would also be of great value. There is significant potential for the Stability Index 735 

methodology described here to be of benefit to a farm manager, as a guide to enhancing and improving mixed 736 

farming system management practices. 737 

Availability of supporting data 738 

The datasets generated during and/or analysed during the current study are available from the corresponding 739 

author on reasonable request. 740 
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