423 research outputs found

    Measuring Energy, Estimating Hamiltonians, and the Time-Energy Uncertainty Relation

    Get PDF
    Suppose that the Hamiltonian acting on a quantum system is unknown and one wants to determine what is the Hamiltonian. We show that in general this requires a time Δt\Delta t which obeys the uncertainty relation ΔtΔH1\Delta t \Delta H \gtrsim 1 where ΔH\Delta H is a measure of how accurately the unknown Hamiltonian must be estimated. We then apply this result to the problem of measuring the energy of an unknown quantum state. It has been previously shown that if the Hamiltonian is known, then the energy can in principle be measured in an arbitrarily short time. On the other hand we show that if the Hamiltonian is not known then an energy measurement necessarily takes a minimum time Δt\Delta t which obeys the uncertainty relation ΔtΔE1\Delta t \Delta E \gtrsim 1 where ΔE\Delta E is the precision of the energy measurement. Several examples are studied to address the question of whether it is possible to saturate these uncertainty relations. Their interpretation is discussed in detail.Comment: 12pages, revised version with small correction

    Hamiltonian Formalism of the de-Sitter Invariant Special Relativity

    Full text link
    Lagrangian of the Einstein's special relativity with universal parameter cc (SRc\mathcal{SR}_c) is invariant under Poincar\'e transformation which preserves Lorentz metric ημν\eta_{\mu\nu}. The SRc\mathcal{SR}_c has been extended to be one which is invariant under de Sitter transformation that preserves so called Beltrami metric BμνB_{\mu\nu}. There are two universal parameters cc and RR in this Special Relativity (denote it as SRcR\mathcal{SR}_{cR}). The Lagrangian-Hamiltonian formulism of SRcR\mathcal{SR}_{cR} is formulated in this paper. The canonic energy, canonic momenta, and 10 Noether charges corresponding to the space-time's de Sitter symmetry are derived. The canonical quantization of the mechanics for SRcR\mathcal{SR}_{cR}-free particle is performed. The physics related to it is discussed.Comment: 24 pages, no figur

    Strong Phase Separation in a Model of Sedimenting Lattices

    Get PDF
    We study the steady state resulting from instabilities in crystals driven through a dissipative medium, for instance, a colloidal crystal which is steadily sedimenting through a viscous fluid. The problem involves two coupled fields, the density and the tilt; the latter describes the orientation of the mass tensor with respect to the driving field. We map the problem to a 1-d lattice model with two coupled species of spins evolving through conserved dynamics. In the steady state of this model each of the two species shows macroscopic phase separation. This phase separation is robust and survives at all temperatures or noise levels--- hence the term Strong Phase Separation. This sort of phase separation can be understood in terms of barriers to remixing which grow with system size and result in a logarithmically slow approach to the steady state. In a particular symmetric limit, it is shown that the condition of detailed balance holds with a Hamiltonian which has infinite-ranged interactions, even though the initial model has only local dynamics. The long-ranged character of the interactions is responsible for phase separation, and for the fact that it persists at all temperatures. Possible experimental tests of the phenomenon are discussed.Comment: To appear in Phys Rev E (1 January 2000), 16 pages, RevTex, uses epsf, three ps figure

    Nonmonotonic dependence of the absolute entropy on temperature in supercooled Stillinger-Weber silicon

    Full text link
    Using a recently developed thermodynamic integration method, we compute the precise values of the excess Gibbs free energy (G^e) of the high density liquid (HDL) phase with respect to the crystalline phase at different temperatures (T) in the supercooled region of the Stillinger-Weber (SW) silicon [F. H. Stillinger and T. A. Weber, Phys. Rev. B. 32, 5262 (1985)]. Based on the slope of G^e with respect to T, we find that the absolute entropy of the HDL phase increases as its enthalpy changes from the equilibrium value at T \ge 1065 K to the value corresponding to a non-equilibrium state at 1060 K. We find that the volume distribution in the equilibrium HDL phases become progressively broader as the temperature is reduced to 1060 K, exhibiting van-der-Waals (VDW) loop in the pressure-volume curves. Our results provides insight into the thermodynamic cause of the transition from the HDL phase to the low density phases in SW silicon, observed in earlier studies near 1060 K at zero pressure.Comment: This version is accepted for publication in Journal of Statistical Physics (11 figures, 1 table

    Microfluidic and Nanofluidic Cavities for Quantum Fluids Experiments

    Full text link
    The union of quantum fluids research with nanoscience is rich with opportunities for new physics. The relevant length scales in quantum fluids, 3He in particular, are comparable to those possible using microfluidic and nanofluidic devices. In this article, we will briefly review how the physics of quantum fluids depends strongly on confinement on the microscale and nanoscale. Then we present devices fabricated specifically for quantum fluids research, with cavity sizes ranging from 30 nm to 11 microns deep, and the characterization of these devices for low temperature quantum fluids experiments.Comment: 12 pages, 3 figures, Accepted to Journal of Low Temperature Physic

    A Model for the Stray Light Contamination of the UVCS Instrument on SOHO

    Full text link
    We present a detailed model of stray-light suppression in the spectrometer channels of the Ultraviolet Coronagraph Spectrometer (UVCS) on the SOHO spacecraft. The control of diffracted and scattered stray light from the bright solar disk is one of the most important tasks of a coronagraph. We compute the fractions of light that diffract past the UVCS external occulter and non-specularly pass into the spectrometer slit. The diffracted component of the stray light depends on the finite aperture of the primary mirror and on its figure. The amount of non-specular scattering depends mainly on the micro-roughness of the mirror. For reasonable choices of these quantities, the modeled stray-light fraction agrees well with measurements of stray light made both in the laboratory and during the UVCS mission. The models were constructed for the bright H I Lyman alpha emission line, but they are applicable to other spectral lines as well.Comment: 19 pages, 5 figures, Solar Physics, in pres

    On the gravitational, dilatonic and axionic radiative damping of cosmic strings

    Full text link
    We study the radiation reaction on cosmic strings due to the emission of dilatonic, gravitational and axionic waves. After verifying the (on average) conservative nature of the time-symmetric self-interactions, we concentrate on the finite radiation damping force associated with the half-retarded minus half-advanced ``reactive'' fields. We revisit a recent proposal of using a ``local back reaction approximation'' for the reactive fields. Using dimensional continuation as convenient technical tool, we find, contrary to previous claims, that this proposal leads to antidamping in the case of the axionic field, and to zero (integrated) damping in the case of the gravitational field. One gets normal positive damping only in the case of the dilatonic field. We propose to use a suitably modified version of the local dilatonic radiation reaction as a substitute for the exact (non-local) gravitational radiation reaction. The incorporation of such a local approximation to gravitational radiation reaction should allow one to complete, in a computationally non-intensive way, string network simulations and to give better estimates of the amount and spectrum of gravitational radiation emitted by a cosmologically evolving network of massive strings.Comment: 48 pages, RevTex, epsfig, 1 figure; clarification of the domain of validity of the perturbative derivation of the string equations of motion, and of their renormalizabilit

    Some anisotropic universes in the presence of imperfect fluid coupling with spatial curvature

    Full text link
    We consider Bianchi VI spacetime, which also can be reduced to Bianchi types VI0-V-III-I. We initially consider the most general form of the energy-momentum tensor which yields anisotropic stress and heat flow. We then derive an energy-momentum tensor that couples with the spatial curvature in a way so as to cancel out the terms that arise due to the spatial curvature in the evolution equations of the Einstein field equations. We obtain exact solutions for the universes indefinetly expanding with constant mean deceleration parameter. The solutions are beriefly discussed for each Bianchi type. The dynamics of the models and fluid are examined briefly, and the models that can approach to isotropy are determined. We conclude that even if the observed universe is almost isotropic, this does not necessarily imply the isotropy of the fluid (e.g., dark energy) affecting the evolution of the universe within the context of general relativity.Comment: 17 pages, no figures; to appear in International Journal of Theoretical Physics; in this version (which is more concise) an equation added, some references updated and adde

    Higher Grading Conformal Affine Toda Teory and (Generalized) Sine-Gordon/Massive Thirring Duality

    Full text link
    Some properties of the higher grading integrable generalizations of the conformal affine Toda systems are studied. The fields associated to the non-zero grade generators are Dirac spinors. The effective action is written in terms of the Wess-Zumino-Novikov-Witten (WZNW) action associated to an affine Lie algebra, and an off-critical theory is obtained as the result of the spontaneous breakdown of the conformal symmetry. Moreover, the off-critical theory presents a remarkable equivalence between the Noether and topological currents of the model. Related to the off-critical model we define a real and local Lagrangian provided some reality conditions are imposed on the fields of the model. This real action model is expected to describe the soliton sector of the original model, and turns out to be the master action from which we uncover the weak-strong phases described by (generalized) massive Thirring and sine-Gordon type models, respectively. The case of any (untwisted) affine Lie algebra furnished with the principal gradation is studied in some detail. The example of sl^(n)(n=2,3)\hat{sl}(n) (n=2,3) is presented explicitly.Comment: 28 pages, JHEP styl

    The Possibilist Transactional Interpretation and Relativity

    Full text link
    A recent ontological variant of Cramer's Transactional Interpretation, called "Possibilist Transactional Interpretation" or PTI, is extended to the relativistic domain. The present interpretation clarifies the concept of 'absorption,' which plays a crucial role in TI (and in PTI). In particular, in the relativistic domain, coupling amplitudes between fields are interpreted as amplitudes for the generation of confirmation waves (CW) by a potential absorber in response to offer waves (OW), whereas in the nonrelativistic context CW are taken as generated with certainty. It is pointed out that solving the measurement problem requires venturing into the relativistic domain in which emissions and absorptions take place; nonrelativistic quantum mechanics only applies to quanta considered as 'already in existence' (i.e., 'free quanta'), and therefore cannot fully account for the phenomenon of measurement, in which quanta are tied to sources and sinks.Comment: Final version with some minor corrections as published in Foundations of Physics. This paper has significant overlap with Chapter 6 of my book on the Transactional Interpretation, forthcoming from Cambridge University Press: http://www.cambridge.org/us/knowledge/isbn/item6860644/?site_locale=en_US (Additional preview material is available at rekastner.wordpress.com) Comments welcom
    corecore