300 research outputs found
Quantum Communication Protocol Employing Weak Measurements
We propose a communication protocol exploiting correlations between two
events with a definite time-ordering: a) the outcome of a {\em weak
measurement} on a spin, and b) the outcome of a subsequent ordinary measurement
on the spin. In our protocol, Alice, first generates a "code" by performing
weak measurements on a sample of N spins.
The sample is sent to Bob, who later performs a post-selection by measuring
the spin along either of two certain directions. The results of the
post-selection define the "key', which he then broadcasts publicly. Using both
her previously generated code and this key, Alice is able to infer the {\em
direction} chosen by Bob in the post-selection. Alternatively, if Alice
broadcasts publicly her code, Bob is able to infer from the code and the key
the direction chosen by Alice for her weak measurement. Two possible
experimental realizations of the protocols are briefly mentioned.Comment: 5 pages, Revtex, 1 figure. A second protocol is added, where by a
similar set of weak measurement Alice can send, instead of receiving, a
message to Bob. The security question for the latter protocol is discusse
An alternative approach to the construction of Schur-Weyl transform
We propose an alternative approach for the construction of the unitary matrix
which performs generalized unitary rotations of the system consisting of
independent identical subsystems (for example spin system). This matrix, when
applied to the system, results in a change of degrees of freedom, uncovering
the information hidden in non-local degrees of freedom. This information can be
used, inter alia, to study the structure of entangled states, their
classification and may be useful for construction of quantum algorithms.Comment: 6 page
Quantum Probabilistic Subroutines and Problems in Number Theory
We present a quantum version of the classical probabilistic algorithms
la Rabin. The quantum algorithm is based on the essential use of
Grover's operator for the quantum search of a database and of Shor's Fourier
transform for extracting the periodicity of a function, and their combined use
in the counting algorithm originally introduced by Brassard et al. One of the
main features of our quantum probabilistic algorithm is its full unitarity and
reversibility, which would make its use possible as part of larger and more
complicated networks in quantum computers. As an example of this we describe
polynomial time algorithms for studying some important problems in number
theory, such as the test of the primality of an integer, the so called 'prime
number theorem' and Hardy and Littlewood's conjecture about the asymptotic
number of representations of an even integer as a sum of two primes.Comment: 9 pages, RevTex, revised version, accepted for publication on PRA:
improvement in use of memory space for quantum primality test algorithm
further clarified and typos in the notation correcte
Classification of multipartite entangled states by multidimensional determinants
We find that multidimensional determinants "hyperdeterminants", related to
entanglement measures (the so-called concurrence or 3-tangle for the 2 or 3
qubits, respectively), are derived from a duality between entangled states and
separable states. By means of the hyperdeterminant and its singularities, the
single copy of multipartite pure entangled states is classified into an onion
structure of every closed subset, similar to that by the local rank in the
bipartite case. This reveals how inequivalent multipartite entangled classes
are partially ordered under local actions. In particular, the generic entangled
class of the maximal dimension, distinguished as the nonzero hyperdeterminant,
does not include the maximally entangled states in Bell's inequalities in
general (e.g., in the qubits), contrary to the widely known
bipartite or 3-qubit cases. It suggests that not only are they never locally
interconvertible with the majority of multipartite entangled states, but they
would have no grounds for the canonical n-partite entangled states. Our
classification is also useful for the mixed states.Comment: revtex4, 10 pages, 4 eps figures with psfrag; v2 title changed, 1
appendix added, to appear in Phys. Rev.
Strong Phase Separation in a Model of Sedimenting Lattices
We study the steady state resulting from instabilities in crystals driven
through a dissipative medium, for instance, a colloidal crystal which is
steadily sedimenting through a viscous fluid. The problem involves two coupled
fields, the density and the tilt; the latter describes the orientation of the
mass tensor with respect to the driving field. We map the problem to a 1-d
lattice model with two coupled species of spins evolving through conserved
dynamics. In the steady state of this model each of the two species shows
macroscopic phase separation. This phase separation is robust and survives at
all temperatures or noise levels--- hence the term Strong Phase Separation.
This sort of phase separation can be understood in terms of barriers to
remixing which grow with system size and result in a logarithmically slow
approach to the steady state. In a particular symmetric limit, it is shown that
the condition of detailed balance holds with a Hamiltonian which has
infinite-ranged interactions, even though the initial model has only local
dynamics. The long-ranged character of the interactions is responsible for
phase separation, and for the fact that it persists at all temperatures.
Possible experimental tests of the phenomenon are discussed.Comment: To appear in Phys Rev E (1 January 2000), 16 pages, RevTex, uses
epsf, three ps figure
Combined effect of coherent Z exchange and the hyperfine interaction in atomic PNC
The nuclear spin-dependent parity nonconserving (PNC) interaction arising
from a combination of the hyperfine interaction and the coherent,
spin-independent, PNC interaction from Z exchange is evaluated using many-body
perturbation theory. For the 6s-7s transition in 133Cs, we obtain a result that
is about 40% smaller than that found previously by Bouchiat and Piketty [Phys.
Lett. B 269, 195 (1991)]. Applying this result to 133Cs, leads to an increase
in the experimental value of nuclear anapole moment and exacerbates differences
between constraints on PNC meson coupling constants obtained from the Cs
anapole moment and those obtained from other nuclear parity violating
experiments. Nuclear spin-dependent PNC dipole matrix elements, including
contributions from the combined weak-hyperfine interaction, are also given for
the 7s-8s transition in 211Fr and for transitions between ground-state
hyperfine levels in K, Rb, Cs, Ba+, Au, Tl, Fr, and Ra+.Comment: Revtex4 preprint 19 pages 4 table
Counterexamples to the maximal p-norm multiplicativity conjecture for all p > 1
For all p > 1, we demonstrate the existence of quantum channels with
non-multiplicative maximal output p-norms. Equivalently, for all p >1, the
minimum output Renyi entropy of order p of a quantum channel is not additive.
The violations found are large; in all cases, the minimum output Renyi entropy
of order p for a product channel need not be significantly greater than the
minimum output entropy of its individual factors. Since p=1 corresponds to the
von Neumann entropy, these counterexamples demonstrate that if the additivity
conjecture of quantum information theory is true, it cannot be proved as a
consequence of any channel-independent guarantee of maximal p-norm
multiplicativity. We also show that a class of channels previously studied in
the context of approximate encryption lead to counterexamples for all p > 2.Comment: Merger of arXiv:0707.0402 and arXiv:0707.3291 containing new and
improved analysis of counterexamples. 17 page
Tomato: a crop species amenable to improvement by cellular and molecular methods
Tomato is a crop plant with a relatively small DNA content per haploid genome and a well developed genetics. Plant regeneration from explants and protoplasts is feasable which led to the development of efficient transformation procedures.
In view of the current data, the isolation of useful mutants at the cellular level probably will be of limited value in the genetic improvement of tomato. Protoplast fusion may lead to novel combinations of organelle and nuclear DNA (cybrids), whereas this technique also provides a means of introducing genetic information from alien species into tomato. Important developments have come from molecular approaches. Following the construction of an RFLP map, these RFLP markers can be used in tomato to tag quantitative traits bred in from related species. Both RFLP's and transposons are in the process of being used to clone desired genes for which no gene products are known. Cloned genes can be introduced and potentially improve specific properties of tomato especially those controlled by single genes. Recent results suggest that, in principle, phenotypic mutants can be created for cloned and characterized genes and will prove their value in further improving the cultivated tomato.
Recommended from our members
Sensitivity analysis of the primary endpoint from the N-MOmentum study of inebilizumab in NMOSD
BACKGROUND: In the N-MOmentum trial, the risk of an adjudicated neuromyelitis optica spectrum disorder (NMOSD) attack was significantly reduced with inebilizumab compared with placebo. OBJECTIVE: To demonstrate the robustness of this finding, using pre-specified sensitivity and subgroup analyses. METHODS: N-MOmentum is a prospective, randomized, placebo-controlled, double-masked trial of inebilizumab, an anti-CD19 monoclonal B-cell-depleting antibody, in patients with NMOSD. Pre-planned and post hoc analyses were performed to evaluate the primary endpoint across a range of attack definitions and demographic groups, as well as key secondary endpoints. RESULTS: In the N-MOmentum trial (ClinicalTrials.gov: NCT02200770), 174 participants received inebilizumab and 56 received placebo. Attack risk for inebilizumab versus placebo was consistently and significantly reduced, regardless of attack definition, type of attack, baseline disability, ethnicity, treatment history, or disease course (all with hazard ratios < 0.4 favoring inebilizumab, p < 0.05). Analyses of secondary endpoints showed similar trends. CONCLUSION: N-MOmentum demonstrated that inebilizumab provides a robust reduction in the risk of NMOSD attacks regardless of attack evaluation method, attack type, patient demographics, or previous therapy.The N-MOmentum study is registered at ClinicalTrials.gov: NCT2200770
- …