300 research outputs found

    Quantum Communication Protocol Employing Weak Measurements

    Get PDF
    We propose a communication protocol exploiting correlations between two events with a definite time-ordering: a) the outcome of a {\em weak measurement} on a spin, and b) the outcome of a subsequent ordinary measurement on the spin. In our protocol, Alice, first generates a "code" by performing weak measurements on a sample of N spins. The sample is sent to Bob, who later performs a post-selection by measuring the spin along either of two certain directions. The results of the post-selection define the "key', which he then broadcasts publicly. Using both her previously generated code and this key, Alice is able to infer the {\em direction} chosen by Bob in the post-selection. Alternatively, if Alice broadcasts publicly her code, Bob is able to infer from the code and the key the direction chosen by Alice for her weak measurement. Two possible experimental realizations of the protocols are briefly mentioned.Comment: 5 pages, Revtex, 1 figure. A second protocol is added, where by a similar set of weak measurement Alice can send, instead of receiving, a message to Bob. The security question for the latter protocol is discusse

    An alternative approach to the construction of Schur-Weyl transform

    Full text link
    We propose an alternative approach for the construction of the unitary matrix which performs generalized unitary rotations of the system consisting of independent identical subsystems (for example spin system). This matrix, when applied to the system, results in a change of degrees of freedom, uncovering the information hidden in non-local degrees of freedom. This information can be used, inter alia, to study the structure of entangled states, their classification and may be useful for construction of quantum algorithms.Comment: 6 page

    Quantum Probabilistic Subroutines and Problems in Number Theory

    Full text link
    We present a quantum version of the classical probabilistic algorithms aˋ\grave{a} la Rabin. The quantum algorithm is based on the essential use of Grover's operator for the quantum search of a database and of Shor's Fourier transform for extracting the periodicity of a function, and their combined use in the counting algorithm originally introduced by Brassard et al. One of the main features of our quantum probabilistic algorithm is its full unitarity and reversibility, which would make its use possible as part of larger and more complicated networks in quantum computers. As an example of this we describe polynomial time algorithms for studying some important problems in number theory, such as the test of the primality of an integer, the so called 'prime number theorem' and Hardy and Littlewood's conjecture about the asymptotic number of representations of an even integer as a sum of two primes.Comment: 9 pages, RevTex, revised version, accepted for publication on PRA: improvement in use of memory space for quantum primality test algorithm further clarified and typos in the notation correcte

    Classification of multipartite entangled states by multidimensional determinants

    Full text link
    We find that multidimensional determinants "hyperdeterminants", related to entanglement measures (the so-called concurrence or 3-tangle for the 2 or 3 qubits, respectively), are derived from a duality between entangled states and separable states. By means of the hyperdeterminant and its singularities, the single copy of multipartite pure entangled states is classified into an onion structure of every closed subset, similar to that by the local rank in the bipartite case. This reveals how inequivalent multipartite entangled classes are partially ordered under local actions. In particular, the generic entangled class of the maximal dimension, distinguished as the nonzero hyperdeterminant, does not include the maximally entangled states in Bell's inequalities in general (e.g., in the n4n \geq 4 qubits), contrary to the widely known bipartite or 3-qubit cases. It suggests that not only are they never locally interconvertible with the majority of multipartite entangled states, but they would have no grounds for the canonical n-partite entangled states. Our classification is also useful for the mixed states.Comment: revtex4, 10 pages, 4 eps figures with psfrag; v2 title changed, 1 appendix added, to appear in Phys. Rev.

    Strong Phase Separation in a Model of Sedimenting Lattices

    Get PDF
    We study the steady state resulting from instabilities in crystals driven through a dissipative medium, for instance, a colloidal crystal which is steadily sedimenting through a viscous fluid. The problem involves two coupled fields, the density and the tilt; the latter describes the orientation of the mass tensor with respect to the driving field. We map the problem to a 1-d lattice model with two coupled species of spins evolving through conserved dynamics. In the steady state of this model each of the two species shows macroscopic phase separation. This phase separation is robust and survives at all temperatures or noise levels--- hence the term Strong Phase Separation. This sort of phase separation can be understood in terms of barriers to remixing which grow with system size and result in a logarithmically slow approach to the steady state. In a particular symmetric limit, it is shown that the condition of detailed balance holds with a Hamiltonian which has infinite-ranged interactions, even though the initial model has only local dynamics. The long-ranged character of the interactions is responsible for phase separation, and for the fact that it persists at all temperatures. Possible experimental tests of the phenomenon are discussed.Comment: To appear in Phys Rev E (1 January 2000), 16 pages, RevTex, uses epsf, three ps figure

    Combined effect of coherent Z exchange and the hyperfine interaction in atomic PNC

    Get PDF
    The nuclear spin-dependent parity nonconserving (PNC) interaction arising from a combination of the hyperfine interaction and the coherent, spin-independent, PNC interaction from Z exchange is evaluated using many-body perturbation theory. For the 6s-7s transition in 133Cs, we obtain a result that is about 40% smaller than that found previously by Bouchiat and Piketty [Phys. Lett. B 269, 195 (1991)]. Applying this result to 133Cs, leads to an increase in the experimental value of nuclear anapole moment and exacerbates differences between constraints on PNC meson coupling constants obtained from the Cs anapole moment and those obtained from other nuclear parity violating experiments. Nuclear spin-dependent PNC dipole matrix elements, including contributions from the combined weak-hyperfine interaction, are also given for the 7s-8s transition in 211Fr and for transitions between ground-state hyperfine levels in K, Rb, Cs, Ba+, Au, Tl, Fr, and Ra+.Comment: Revtex4 preprint 19 pages 4 table

    Counterexamples to the maximal p-norm multiplicativity conjecture for all p > 1

    Full text link
    For all p > 1, we demonstrate the existence of quantum channels with non-multiplicative maximal output p-norms. Equivalently, for all p >1, the minimum output Renyi entropy of order p of a quantum channel is not additive. The violations found are large; in all cases, the minimum output Renyi entropy of order p for a product channel need not be significantly greater than the minimum output entropy of its individual factors. Since p=1 corresponds to the von Neumann entropy, these counterexamples demonstrate that if the additivity conjecture of quantum information theory is true, it cannot be proved as a consequence of any channel-independent guarantee of maximal p-norm multiplicativity. We also show that a class of channels previously studied in the context of approximate encryption lead to counterexamples for all p > 2.Comment: Merger of arXiv:0707.0402 and arXiv:0707.3291 containing new and improved analysis of counterexamples. 17 page

    Tomato: a crop species amenable to improvement by cellular and molecular methods

    Get PDF
    Tomato is a crop plant with a relatively small DNA content per haploid genome and a well developed genetics. Plant regeneration from explants and protoplasts is feasable which led to the development of efficient transformation procedures. In view of the current data, the isolation of useful mutants at the cellular level probably will be of limited value in the genetic improvement of tomato. Protoplast fusion may lead to novel combinations of organelle and nuclear DNA (cybrids), whereas this technique also provides a means of introducing genetic information from alien species into tomato. Important developments have come from molecular approaches. Following the construction of an RFLP map, these RFLP markers can be used in tomato to tag quantitative traits bred in from related species. Both RFLP's and transposons are in the process of being used to clone desired genes for which no gene products are known. Cloned genes can be introduced and potentially improve specific properties of tomato especially those controlled by single genes. Recent results suggest that, in principle, phenotypic mutants can be created for cloned and characterized genes and will prove their value in further improving the cultivated tomato.
    corecore