15,793 research outputs found

    Quantum Correlation Bounds for Quantum Information Experiments Optimization: the Wigner Inequality Case

    Full text link
    Violation of modified Wigner inequality by means binary bipartite quantum system allows the discrimination between the quantum world and the classical local-realistic one, and also ensures the security of Ekert-like quantum key distribution protocol. In this paper we study both theoretically and experimentally the bounds of quantum correlation associated to the modified Wigner's inequality finding the optimal experimental configuration for its maximal violation. We also extend this analysis to the implementation of Ekert's protocol

    Quantum nonlocality in the presence of superselection rules and data hiding protocols

    Get PDF
    We consider a quantum system subject to superselection rules, for which certain restrictions apply to the quantum operations that can be implemented. It is shown how the notion of quantum-nonlocality has to be redefined in the presence of superselection rules: there exist separable states that cannot be prepared locally and exhibit some form of nonlocality. Moreover, the notion of local distinguishability in the presence of classical communication has to be altered. This can be used to perform quantum information tasks that are otherwise impossible. In particular, this leads to the introduction of perfect quantum data hiding protocols, for which quantum communication (eventually in the form of a separable but nonlocal state) is needed to unlock the secret.Comment: 4 page

    Gamma Ray Bursts with peculiar temporal asymmetry

    Get PDF
    Based on the study of temporal asymmetry of 631 gamma ray bursts from the BATSE 3B catalog by Link and Epstein [Ap J 466, 764 (1996)], we identify the population of bursts whose rising times are longer than their decays, thus showing atypical profiles. We analyse their sky distribution, morphology, time-space clustering and other average properties and compare them with those associated with the bulk of the bursts. We show how most of the peculiar bursts analysed are consistent with recent fireball models, but a fraction of bursts (4\sim 4% of the total sample) appear to be inconsistent.Comment: mn style (included in the submission), 4 figures that must be printed separately. Submitted to Monthly Notices of RA

    GHZ extraction yield for multipartite stabilizer states

    Get PDF
    Let Ψ>|\Psi> be an arbitrary stabilizer state distributed between three remote parties, such that each party holds several qubits. Let SS be a stabilizer group of Ψ>|\Psi>. We show that Ψ>|\Psi> can be converted by local unitaries into a collection of singlets, GHZ states, and local one-qubit states. The numbers of singlets and GHZs are determined by dimensions of certain subgroups of SS. For an arbitrary number of parties mm we find a formula for the maximal number of mm-partite GHZ states that can be extracted from Ψ>|\Psi> by local unitaries. A connection with earlier introduced measures of multipartite correlations is made. An example of an undecomposable four-party stabilizer state with more than one qubit per party is given. These results are derived from a general theoretical framework that allows one to study interconversion of multipartite stabilizer states by local Clifford group operators. As a simple application, we study three-party entanglement in two-dimensional lattice models that can be exactly solved by the stabilizer formalism.Comment: 12 pages, 1 figur

    Robust long-distance entanglement and a loophole-free Bell test with ions and photons

    Get PDF
    Two trapped ions that are kilometers apart can be entangled by the joint detection of two photons, each coming from one of the ions, in a basis of entangled states. Such a detection is possible with linear optical elements. The use of two-photon interference allows entanglement distribution without interferometric sensitivity to the path length of the photons. The present method of creating entangled ions also opens up the possibility of a loophole-free test of Bell's inequalities.Comment: published versio

    Judging the impact of leadership-development activities on school practice

    Get PDF
    The nature and effectiveness of professional-development activities should be judged in a way that takes account of both the achievement of intended outcomes and the unintended consequences that may result. Our research project set out to create a robust approach that school staff members could use to assess the impact of professional-development programs on leadership and management practice without being constrained in this judgment by the stated aims of the program. In the process, we identified a number of factors and requirements relevant to a wider audience than that concerned with the development of leadership and management in England. Such an assessment has to rest upon a clear understanding of educational leadership,a clearly articulated model of practice, and a clear model of potential forms of impact. Such foundations, suitably adapted to the subject being addressed, are appropriate for assessing all teacher professional development

    The Parity Bit in Quantum Cryptography

    Get PDF
    An nn-bit string is encoded as a sequence of non-orthogonal quantum states. The parity bit of that nn-bit string is described by one of two density matrices, ρ0(n)\rho_0^{(n)} and ρ1(n)\rho_1^{(n)}, both in a Hilbert space of dimension 2n2^n. In order to derive the parity bit the receiver must distinguish between the two density matrices, e.g., in terms of optimal mutual information. In this paper we find the measurement which provides the optimal mutual information about the parity bit and calculate that information. We prove that this information decreases exponentially with the length of the string in the case where the single bit states are almost fully overlapping. We believe this result will be useful in proving the ultimate security of quantum crytography in the presence of noise.Comment: 19 pages, RevTe

    Mixed State Entanglement and Quantum Error Correction

    Get PDF
    Entanglement purification protocols (EPP) and quantum error-correcting codes (QECC) provide two ways of protecting quantum states from interaction with the environment. In an EPP, perfectly entangled pure states are extracted, with some yield D, from a mixed state M shared by two parties; with a QECC, an arbi- trary quantum state ξ|\xi\rangle can be transmitted at some rate Q through a noisy channel χ\chi without degradation. We prove that an EPP involving one- way classical communication and acting on mixed state M^(χ)\hat{M}(\chi) (obtained by sharing halves of EPR pairs through a channel χ\chi) yields a QECC on χ\chi with rate Q=DQ=D, and vice versa. We compare the amount of entanglement E(M) required to prepare a mixed state M by local actions with the amounts D1(M)D_1(M) and D2(M)D_2(M) that can be locally distilled from it by EPPs using one- and two-way classical communication respectively, and give an exact expression for E(M)E(M) when MM is Bell-diagonal. While EPPs require classical communica- tion, QECCs do not, and we prove Q is not increased by adding one-way classical communication. However, both D and Q can be increased by adding two-way com- munication. We show that certain noisy quantum channels, for example a 50% depolarizing channel, can be used for reliable transmission of quantum states if two-way communication is available, but cannot be used if only one-way com- munication is available. We exhibit a family of codes based on universal hash- ing able toachieve an asymptotic QQ (or DD) of 1-S for simple noise models, where S is the error entropy. We also obtain a specific, simple 5-bit single- error-correcting quantum block code. We prove that {\em iff} a QECC results in high fidelity for the case of no error the QECC can be recast into a form where the encoder is the matrix inverse of the decoder.Comment: Resubmission with various corrections and expansions. See also http://vesta.physics.ucla.edu/~smolin/ for related papers and information. 82 pages latex including 19 postscript figures included using psfig macro

    Complete Characterization of a Quantum Process: the Two-Bit Quantum Gate

    Get PDF
    We show how to fully characterize a quantum process in an open quantum system. We particularize the procedure to the case of a universal two-qubit gate in a quantum computer. We illustrate the method with a numerical simulation of a quantum gate in the ion trap quantum computer.Comment: Accepted for publication in Physical Review Letters 08Nov96 (submitted 15Jly96

    A Search for Stellar Obscuration Events due to Dark Clouds

    Get PDF
    The recent detections of a large population of faint submillimetre sources, an excess halo gamma-ray background, and the extreme scattering events observed for extragalactic radio sources have been explained as being due to baryonic dark matter in the form of small, dark, gas clouds. In this paper we present the results of a search for the transient stellar obscurations such clouds are expected to cause. We examine the Macho project light curves of 48 x 10^6 stars toward the Galactic bulge, LMC and SMC for the presence of dark cloud extinction events. We find no evidence for the existence of a population of dark gas clouds with Av > 0.2 and masses between ~ 10^-4 and 10^-2 M_solar in the Galactic disk or halo. However, it is possible that such dark cloud populations could exist if they are clustered in regions away from the observed lines of sight.Comment: 13 pages, 9 figures, submitted to Ap
    corecore