30,462 research outputs found

    A Foundation of Programming a Multi-Tape Quantum Turing machine

    Get PDF
    The notion of quantum Turing machines is a basis of quantum complexity theory. We discuss a general model of multi-tape, multi-head Quantum Turing machines with multi final states that also allow tape heads to stay still.Comment: A twelve page version is to appear in the Proceedings of the 24th International Symposium on Mathematical Foundations of Computer Science in September, 1999. LNC

    On the origin of noisy states whose teleportation fidelity can be enhanced through dissipation

    Full text link
    Recently Badziag \emph{et al.} \cite{badziag} obtained a class of noisy states whose teleportation fidelity can be enhanced by subjecting one of the qubits to dissipative interaction with the environment via amplitude damping channel (ADC). We show that such noisy states result while sharing the states (| \Phi ^{\pm}> =\frac{1}{\sqrt{2}}(| 00> \pm | 11>)) across ADC. We also show that under similar dissipative interactions different Bell states give rise to noisy entangled states that are qualitatively very different from each other in the sense, only the noisy entangled states constructed from the Bell states (| \Phi ^{\pm}>) can \emph{}be made better sometimes by subjecting the unaffected qubit to a dissipative interaction with the environment. Importantly if the noisy state is non teleporting then it can always be made teleporting with this prescription. We derive the most general restrictions on improvement of such noisy states assuming that the damping parameters being different for both the qubits. However this curious prescription does not work for the noisy entangled states generated from (| \Psi ^{\pm}> =\frac{1}{\sqrt{2}}(| 01> \pm | 10>)). This shows that an apriori knowledge of the noisy channel might be helpful to decide which Bell state needs to be shared between Alice and Bob. \emph{}Comment: Latex, 18 pages: Revised version with a new result. Submitted to PR

    Quantum cryptography protocols robust against photon number splitting attacks for weak laser pulses implementations

    Full text link
    We introduce a new class of quantum quantum key distribution protocols, tailored to be robust against photon number splitting (PNS) attacks. We study one of these protocols, which differs from the BB84 only in the classical sifting procedure. This protocol is provably better than BB84 against PNS attacks at zero error.Comment: 4 pages, 2 figure

    A classical analogue of entanglement

    Get PDF
    We show that quantum entanglement has a very close classical analogue, namely secret classical correlations. The fundamental analogy stems from the behavior of quantum entanglement under local operations and classical communication and the behavior of secret correlations under local operations and public communication. A large number of derived analogies follow. In particular teleportation is analogous to the one-time-pad, the concept of ``pure state'' exists in the classical domain, entanglement concentration and dilution are essentially classical secrecy protocols, and single copy entanglement manipulations have such a close classical analog that the majorization results are reproduced in the classical setting. This analogy allows one to import questions from the quantum domain into the classical one, and vice-versa, helping to get a better understanding of both. Also, by identifying classical aspects of quantum entanglement it allows one to identify those aspects of entanglement which are uniquely quantum mechanical.Comment: 13 pages, references update

    Simple Proof of Security of the BB84 Quantum Key Distribution Protocol

    Get PDF
    We prove the security of the 1984 protocol of Bennett and Brassard (BB84) for quantum key distribution. We first give a key distribution protocol based on entanglement purification, which can be proven secure using methods from Lo and Chau's proof of security for a similar protocol. We then show that the security of this protocol implies the security of BB84. The entanglement-purification based protocol uses Calderbank-Shor-Steane (CSS) codes, and properties of these codes are used to remove the use of quantum computation from the Lo-Chau protocol.Comment: 5 pages, Latex, minor changes to improve clarity and fix typo

    Quantum key distribution with 2-bit quantum codes

    Full text link
    We propose a prepare-and-measure scheme for quantum key distribution with 2-bit quantum codes. The protocol is unconditionally secure under whatever type of intercept-and-resend attack. Given the symmetric and independent errors to the transmitted qubits, our scheme can tolerate a bit error rate up to 26% in 4-state protocol and 30% in 6-state protocol, respectively. These values are higher than all currently known threshold values for prepare-and-measure protocols. A specific realization with linear optics is given.Comment: Approved for publication in Physical Review Letter

    Irreversibility in asymptotic manipulations of entanglement

    Get PDF
    We show that the process of entanglement distillation is irreversible by showing that the entanglement cost of a bound entangled state is finite. Such irreversibility remains even if extra pure entanglement is loaned to assist the distillation process.Comment: RevTex, 3 pages, no figures Result on indistillability of PPT states under pure entanglement catalytic LOCC adde

    The Parity Bit in Quantum Cryptography

    Get PDF
    An nn-bit string is encoded as a sequence of non-orthogonal quantum states. The parity bit of that nn-bit string is described by one of two density matrices, ρ0(n)\rho_0^{(n)} and ρ1(n)\rho_1^{(n)}, both in a Hilbert space of dimension 2n2^n. In order to derive the parity bit the receiver must distinguish between the two density matrices, e.g., in terms of optimal mutual information. In this paper we find the measurement which provides the optimal mutual information about the parity bit and calculate that information. We prove that this information decreases exponentially with the length of the string in the case where the single bit states are almost fully overlapping. We believe this result will be useful in proving the ultimate security of quantum crytography in the presence of noise.Comment: 19 pages, RevTe

    Quantum computers can search arbitrarily large databases by a single query

    Full text link
    This paper shows that a quantum mechanical algorithm that can query information relating to multiple items of the database, can search a database in a single query (a query is defined as any question to the database to which the database has to return a (YES/NO) answer). A classical algorithm will be limited to the information theoretic bound of at least O(log N) queries (which it would achieve by using a binary search).Comment: Several enhancements to the original pape

    An improved bound on distillable entanglement

    Full text link
    The best bound known on 2-locally distillable entanglement is that of Vedral and Plenio, involving a certain measure of entanglement based on relative entropy. It turns out that a related argument can be used to give an even stronger bound; we give this bound, and examine some of its properties. In particular, and in contrast to the earlier bounds, the new bound is not additive in general. We give an example of a state for which the bound fails to be additive, as well as a number of states for which the bound is additive.Comment: 14 pages, no figures. A significant erratum in theorems 4 and 5 has been fixe
    corecore