339 research outputs found
Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities
We analyze the signal processing required for the optimal detection of a
stochastic background of gravitational radiation using laser interferometric
detectors. Starting with basic assumptions about the statistical properties of
a stochastic gravity-wave background, we derive expressions for the optimal
filter function and signal-to-noise ratio for the cross-correlation of the
outputs of two gravity-wave detectors. Sensitivity levels required for
detection are then calculated. Issues related to: (i) calculating the
signal-to-noise ratio for arbitrarily large stochastic backgrounds, (ii)
performing the data analysis in the presence of nonstationary detector noise,
(iii) combining data from multiple detector pairs to increase the sensitivity
of a stochastic background search, (iv) correlating the outputs of 4 or more
detectors, and (v) allowing for the possibility of correlated noise in the
outputs of two detectors are discussed. We briefly describe a computer
simulation which mimics the generation and detection of a simulated stochastic
gravity-wave signal in the presence of simulated detector noise. Numerous
graphs and tables of numerical data for the five major interferometers
(LIGO-WA, LIGO-LA, VIRGO, GEO-600, and TAMA-300) are also given. The treatment
given in this paper should be accessible to both theorists involved in data
analysis and experimentalists involved in detector design and data acquisition.Comment: 81 pages, 30 postscript figures, REVTE
Collective versus local measurements on two parallel or antiparallel spins
We give a complete analysis of covariant measurements on two spins. We
consider the cases of two parallel and two antiparallel spins, and we consider
both collective measurements on the two spins, and measurements which require
only Local Quantum Operations and Classical Communication (LOCC). In all cases
we obtain the optimal measurements for arbitrary fidelities. In particular we
show that if the aim is determine as well as possible the direction in which
the spins are pointing, it is best to carry out measurements on antiparallel
spins (as already shown by Gisin and Popescu), second best to carry out
measurements on parallel spins and worst to be restricted to LOCC measurements.
If the the aim is to determine as well as possible a direction orthogonal to
that in which the spins are pointing, it is best to carry out measurements on
parallel spins, whereas measurements on antiparallel spins and LOCC
measurements are both less good but equivalent.Comment: 4 pages; minor revision
Optimal estimation of quantum dynamics
We construct the optimal strategy for the estimation of an unknown unitary
transformation . This includes, in addition to a convenient
measurement on a probe system, finding which is the best initial state on which
is to act. When , such an optimal strategy can be applied to
estimate simultaneously both the direction and the strength of a magnetic
field, and shows how to use a spin 1/2 particle to transmit information about a
whole coordinate system instead of only a direction in space.Comment: 4 pages, REVTE
Parametrization of projector-based witnesses for bipartite systems
Entanglement witnesses are nonpositive Hermitian operators which can detect
the presence of entanglement. In this paper, we provide a general
parametrization for orthonormal basis of and use it to
construct projector-based witness operators for entanglement detection in the
vicinity of pure bipartite states. Our method to parameterize entanglement
witnesses is operationally simple and could be used for doing symbolic and
numerical calculations. As an example we use the method for detecting
entanglement between an atom and the single mode of quantized field, described
by the Jaynes-Cummings model. We also compare the detection of witnesses with
the negativity of the state, and show that in the vicinity of pure stats such
constructed witnesses able to detect entanglement of the state.Comment: 12 pages, four figure
The quantum cryptographic switch
We illustrate using a quantum system the principle of a cryptographic switch,
in which a third party (Charlie) can control to a continuously varying degree
the amount of information the receiver (Bob) receives, after the sender (Alice)
has sent her information. Suppose Charlie transmits a Bell state to Alice and
Bob. Alice uses dense coding to transmit two bits to Bob. Only if the 2-bit
information corresponding to choice of Bell state is made available by Charlie
to Bob can the latter recover Alice's information. By varying the information
he gives, Charlie can continuously vary the information recovered by Bob. The
performance of the protocol subjected to the squeezed generalized amplitude
damping channel is considered. We also present a number of practical situations
where a cryptographic switch would be of use.Comment: 7 pages, 4 Figure
On the distinguishability of random quantum states
We develop two analytic lower bounds on the probability of success p of
identifying a state picked from a known ensemble of pure states: a bound based
on the pairwise inner products of the states, and a bound based on the
eigenvalues of their Gram matrix. We use the latter to lower bound the
asymptotic distinguishability of ensembles of n random quantum states in d
dimensions, where n/d approaches a constant. In particular, for almost all
ensembles of n states in n dimensions, p>0.72. An application to distinguishing
Boolean functions (the "oracle identification problem") in quantum computation
is given.Comment: 20 pages, 2 figures; v2 fixes typos and an error in an appendi
T violation and the unidirectionality of time
An increasing number of experiments at the Belle, BNL, CERN, DA{\Phi}NE and
SLAC accelerators are confirming the violation of time reversal invariance (T).
The violation signifies a fundamental asymmetry between the past and future and
calls for a major shift in the way we think about time. Here we show that
processes which violate T symmetry induce destructive interference between
different paths that the universe can take through time. The interference
eliminates all paths except for two that represent continuously forwards and
continuously backwards time evolution. Evidence from the accelerator
experiments indicates which path the universe is effectively following. This
work may provide fresh insight into the long-standing problem of modeling the
dynamics of T violation processes. It suggests that T violation has previously
unknown, large-scale physical effects and that these effects underlie the
origin of the unidirectionality of time. It may have implications for the
Wheeler-DeWitt equation of canonical quantum gravity. Finally it provides a
view of the quantum nature of time itself.Comment: 24 pages, 5 figures. Final version accepted for publishing in
Foundations of Physics. The final publication is available at
http://www.springerlink.com/content/y3h4174jw2w78322
Optimal discrimination of mixed quantum states involving inconclusive results
We propose a generalized discrimination scheme for mixed quantum states. In
the present scenario we allow for certain fixed fraction of inconclusive
results and we maximize the success rate of the quantum-state discrimination.
This protocol interpolates between the Ivanovic-Dieks-Peres scheme and the
Helstrom one. We formulate the extremal equations for the optimal positive
operator valued measure describing the discrimination device and establish a
criterion for its optimality. We also devise a numerical method for efficient
solving of these extremal equations.Comment: 5 pages, 1 figur
A Binary Lensing Event Toward the LMC: Observations and Dark Matter Implications
The MACHO collaboration has recently analyzed 2.1 years of photometric data
for about 8.5 million stars in the Large Magellanic Cloud (LMC). This analysis
has revealed 8 candidate microlensing events and a total microlensing optical
depth of . This significantly
exceeds the number of events (1.1) and the microlensing optical depth predicted
from known stellar populations: , but it is
consistent with models in which about half of the standard dark halo mass is
composed of Machos of mass \sim 0.5 \msun. One of these 8 events appears to
be a binary lensing event with a caustic crossing that is partially resolved
which allows us to estimate the distance to the lenses. If the source star is
not a short period binary star, then we show that the lens system is very
likely to reside in the LMC. However, if we assume that the optical depth for
LMC-LMC lensing is large enough to account for our entire lensing signal, then
the binary event does not appear to be consistent with lensing of a single LMC
source star by a binary residing in the LMC. Thus, while the binary lens may
indeed reside in the LMC, there is no indication that most of the lenses reside
in the LMC.Comment: 5 pages, 3 postscript figures included; To appear in the Proceedings
of the Dark Matter '96 Conference held in Santa Monica, CA, Feb., 199
- …