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A pronounced enthalpy release occurs around 1.38Tg in the
prototypical metal–organic framework glass formed from ZIF-4
[Zn(C3H3N2)2], but there is no sign for any crystalli Q4zation
(i.e., long-range ordering) taking place.
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Q2Structural evolution in a melt-quenched zeolitic
imidazolate framework glass during heat-
treatment†

Jiayan Zhang,ab Louis Longley,c Hao Liu,ab Christopher W. Ashling,c

Philip A. Chater,d Kevin A. Beyer,e Karena W. Chapman,e Haizheng Tao,a

David A. Keen, f Thomas D. Bennett *c and Yuanzheng Yue *ab

A pronounced enthalpy release occurs around 1.38Tg in the proto-

typical metal–organic framework glass formed from ZIF-4

[Zn(C3H3N2)2], but there is no sign for any crystallization (i.e.,

long-range ordering) taking place. The enthalpy release peak is

attributed to pore collapse and structural densification.

Metal–organic frameworks (MOFs) consist of metal clusters or
ions linked by organic ligands into large open-networks with
various pore architectures.1,2 Amongst these, the zeolitic imi-
dazolate frameworks (ZIFs) are of interest due to their excellent
chemical stabilities.3 The M–Im–M (M – transition metal,
Im – imidazolate, C3H3N2

�) angle in ZIFs is analogous to the
Si–O–Si bond angle in zeolites, and so many ZIFs adopt zeolitic
tetrahedral network topologies.4,5 Thermal6 and pressure-
induced7 amorphization of the crystalline state is observed,
with one structure, ZIF-4, melting to form a ‘liquid-MOF’ at ca.
860 K.8 Quenching this liquid yields a glass with a continuous
random network of corner-sharing Zn(Im)4 tetrahedra.9 Given
the structural similarities to conventional SiO2 glass, this
presents opportunities to study MOF-glasses in the context of
existing inorganic glass materials.10–12

In particular, the dynamic properties of the glasses upon
heating should be investigated, given the rich behavior of the
structural evolution upon heating of other supercooled liquid
families.13–15 Motivated by an initial study on the glass formed

by melt-quenching ZIF-62 [Zn(Im)1.75(bIm)0.25] (bIm – benzimi-
dazolate C7H5N2

�), which demonstrates ultrahigh stability
against crystallization,16 here we investigate the effect of heat-
treatment upon a melt-quenched zeolitic imidazolate frame-
work glass, formed from ZIF-4 [Zn(Im)2]. Consistent with prior
literature, the ZIF-liquid quenched back to room temperature
at a rate of 10 K min�1 is referred to as agZIF-4.17

Differential scanning calorimetry (DSC) experiments were
performed on a crystalline sample of ZIF-4, and show desolva-
tion, amorphization, recrystallization (to the dense ZIF-zni
phase, also of composition Zn(Im)2), and subsequent melting
events. These are labelled features A–D respectively, in the
black dashed curve in Fig. 1, and are consistent with previous
results.9 In a second experiment, a sample of ZIF-4 was heated
to 853 K, i.e., above the melting temperature, Tm, and quenched
back to room temperature at a rate of 20 K min�1, which is
twice as fast as the quench rate used for previous ZIF-4 glass
samples. The resultant material is termed fq-agZIF-4 (fq – fast
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Fig. 1 (a) Cp measurements (black) and thermogravimetric analysis (red)
of as-synthesized crystalline ZIF-4 (dashed line) and agZIF-4 (solid line), at
a heating rate of 10 K min�1. A: desolvation; B: amorphization; C:
recrystallisation to ZIF-zni; D: melting; F: decomposition. Tg: glass transi-
tion temperature; DH1: enthalpy released during crystallization of ZIF-zni;
DH2: enthalpy released during the exothermal peak E. (b) Unit cell of ZIF-4
crystal and (c) atomic configuration of the melt-quenched agZIF-4 from
ref. 10. Zn – orange, N – blue, C – grey, H – white.
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quenched) for clarity. Reheating fq-agZIF-4 (under argon) in the
DSC, revealed a glass transition in the region of 565–595 K with
the glass transition temperature (Tg) of 575 K (black solid curve
in Fig. 1). Curiously, after the glass transition, a broad exother-
mic peak (marked as E) occurs at ca. 725–820 K. The enthalpy
released during this process is 29 J g�1, lower than that of the
formation of the crystal ZIF-zni (50 J g�1). Decomposition of the
liquid of ZIF-4 glass is then evident at ca. 840 K (point F), which
is 30 K lower than the decomposition temperature of the liquid
of ZIF-zni, without quenching back to room temperature.9

In poor inorganic glass formers, crystallization above the
glass transition is common, which causes a narrow and sharp
exothermic peak, due to energy release during fast nucleation
and crystal growth.18,19 To determine whether this occurs here,
isothermal heat-treatments were performed on fq-agZIF-4, at
varying treatment temperatures (Th), for times (th) of 5 and 30
minutes, in the region of the exothermic peak E. PXRD mea-
surements of the resultant material show no sharp Bragg peaks,
implying that long-range ordering (LRO) does not occur, i.e.,
the samples did not recrystallize (Fig. 2a). This behavior is in
contrast with many other glass systems where an exothermic
response occurred during heat-treatment is representing LRO.

Even prolonged heating of fq-agZIF-4 at Th = 793 K for 420 min,
did not result in sharp Bragg diffraction (Fig. 2b). This tem-
perature was chosen due to its location at the top of exothermic
peak E (Fig. 2a inset). The absence of Bragg diffraction confirms
that peak E is not associated with a crystallization process, i.e.,
LRO, but instead must be attributed to a lowering of enthalpy of
the system, and hence, causes the exothermic response, i.e., the
release of 29 J g�1 energy.

Samples of fq-agZIF-4 were also heat-treated for 5 minutes at
temperatures ranging from 748 K to 823 K, before cooling to
room temperature (Fig. S1, ESI†). DSC experiments show Tg to be
largely unaffected, i.e., both long-range disorder and the glass
network connectivity remain unchanged. Heat-treatment at
823 K however resulted in disappearance of the glass transition
peak (Fig. S2, ESI†). A sample of fq-agZIF-4 was heat-treated at
793 K for 420 min, and the product is hereby referred to as ht-fq-
agZIF-4 (ht – heat-treated), for clarity. DSC experiments con-
firmed that the exothermic peak E is present in both fq-agZIF-4
and ht-fq-agZIF-4 (Fig. S3, ESI†). SEM images show little differ-
ence between the two samples, though optical photographs
show a distinct darkening in colour after heat-treatment
(Fig. S4, ESI†). 13C liquid NMR spectroscopy measurements were
carried out (Fig. S5 and S6, ESI†) and, as expected, the two 13C
signals for the glass remain unchanged with increasing Th,
indicating that the local chemical environments of C-1 and C-2
on the imidazolate ring are unaltered during heat-treatment.
Pycnometric density measurements demonstrated an increase in
density during melt-quenching and heat-treatment. Densities of
ZIF-4 crystal, fq-agZIF-4 and ht-fq-agZIF-4 were recorded as 1.25,
1.67 and 1.76 g cm�3, respectively.

Fourier transform infrared (FTIR) spectra using the KBr disc
technique were obtained. The full spectra of mid-IR region for
the samples of ZIF-4, fq-agZIF-4 and ht-fq-agZIF-4 are shown in
Fig. S7, ESI.†. The peaks located at 1681–1475 cm�1 are char-
acteristic of CQC, CQN and imidazolate ring stretching.20,21

Both the decreased absorption of the peak near 1680 cm�1 and
the increased absorption of the associated weak peak near
1600 cm�1 indicate possible distortion of the imidazolate rings
in the ZIF-4 glass upon melt-quenching and heat-treatment.
This is further confirmed by the noticeable change of the C–H
bending peak near 1387 cm�1. The peak at around 530 cm�1 is
assigned to imidazolate ring out-of-plane bending.21,22

To probe any structural differences induced by heat-treatment,
room temperature X-ray total scattering measurements were
performed on fq-agZIF-4 and ht-fq-agZIF-4, and compared to
previous data on a sample of ZIF-4 glass formed by natural cooling
from 853 K, referred to as agZIF-4 (Fig. 3).8 The absence of Bragg
diffraction in the structure factor S(Q) of all samples confirms
their amorphous nature and long-range disorder (Fig. 3a), while
those for agZIF-4 and fq-agZIF-4 are near identical. The first sharp
diffraction peak (FSDP) for ht-fq-agZIF-4 appears to shift slightly to
higher Q, which is in accordance with the higher density of this
heat-treated sample. Pair distribution functions (PDFs) data were
produced by a Fourier transform of these data. The short-range
order (SRO) of the samples, i.e. correlations below 6 Å indicating
local intra-imidazolate bonds and four local Zn–Im coordinating
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Fig. 2 (a) Powder X-ray diffraction (PXRD) patterns of fq-agZIF-4, heat-
treated at different temperatures for 30 min. Inset: DSC curve of fq-agZIF-4,
showing the range of Th. (b) PXRD patterns of ZIF-4, ZIF-zni, and fq-agZIF-4
heat-treated at Th = 793 K for various durations from 0 to 420 min. th: heat-
treatment duration; Th: heat-treatment temperature.

2 | Chem. Commun., 2019, 00, 1�4 This journal is �c The Royal Society of Chemistry 2019

Communication ChemComm



bonds forming a tetrahedron are consistent with those witnessed
for glass ZIFs previously.23 Positions of the peaks belonging to the
C–C/C–N, Zn–N, Zn–C, Zn–N and Zn–Zn distances at ca. 1.33, 2, 3,
4 and 6 Å are largely unchanged between samples. Specifically,
correlations between 6 Å and 8 Å for ht-fq-agZIF-4 are less distinct
upon heat-treatment above Tg. The feature at 7.5 Å, which has
previously been ascribed to a M–L–M–L interaction (i.e. between
Zn and a nitrogen atom of the 2nd nearest imidazolate in this
sample),24 is less pronounced. The weaker degree of atomic pair
correlations in this region is perhaps associated with structural
relaxation (and the associated densification) upon heat-treatment.

To provide a firm structural origin for the exothermic peak E
in the DSC scans, high temperature X-ray total scattering mea-
surements, collected on a sample of agZIF-4 at the APS synchro-
tron and published previously, were reanalysed.8 These data
were collected on heating agZIF-4 at the Advanced Photon
Source, US. Temperature intervals were roughly 100 K, from
298 to 778 K (Fig. S8 left, ESI†), and showed little change in the
FSDP. However, those obtained in 6 K steps from 778 K to 862 K
(Fig. S8 right, ESI†) demonstrated marked changes. A Pseudo-
Voigt peak fit was applied to model the position, intensity and
width of the FSDP as a function of temperature (Fig. 4). A sharp
change at approximately 770 K (i.e. close to the onset of the
exothermic peak E in Fig. 1a) was seen in all parameters
reflecting structural changes in the glass at this temperature
(Fig. 4 and Fig S9, ESI†). The increase in position and decrease in
intensity qualitatively indicate a densification of the structure.

Hence, holding the as-quenched ZIF-4 glass at 793 K (1.38
Tg) for 420 min can lead to structural densification, towards a
lower energy state (i.e., 29 J g�1 lower). The energy released by

this process is 3/5 of the energy released by LRO, i.e., crystal-
lization (Peak C in Fig. 1a). This type of relaxation has not been
observed in inorganic network glasses. The degree of relaxation
is driven by two structural factors of the ZIF-4 glass. First, the
size of Zn[Im]4 tetrahedron is much larger than that of SiO4

tetrahedron since the Zn–Zn distance (5.9 Å) is much longer
than the Si–Si distance (3.1 Å). Second, the coordinating
bond between Zn and Im is significantly weaker than the
Si–O bonds in oxide glasses. These two factors make the
Zn(Im)4 tetrahedron more ‘floppy’, and hence more distorted
after melt-quenching, and therefore pose a higher thermo-
dynamic driving force for relaxation.

Piecing the results together yields a complex picture of struc-
tural evolution in agZIF-4. The absence of crystallization in the
glass, even after heat-treatment at high Th for a long duration, is
encouraging for the development of future applications.
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Fig. 3 (a) X-ray total scattering data S(Q) and (b) corresponding X-ray pair
distribution functions D(r).

Fig. 4 Variable temperature synchrotron X-ray total scattering data S(Q)
showing changes in the (a) position and (b) amplitude of the first sharp
diffraction peak (FSDP) with temperature. The two highest temperature
points were collected during sample decomposition and above 900 K the
pattern mostly consisted of that of the silica capillary.
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