1,025,809 research outputs found

    Making Things Up

    Get PDF
    Making Things Up. By Bennett Karen

    A Note on Language Learning and Study Abroad

    Get PDF
    This letter from returnee Ashley Bennett explains the value of studying abroad in Austria

    Canoodlers by andrea bennett

    Get PDF
    Review of andrea bennett’s Canoodlers

    Voltage-induced strain clocking of nanomagnets with perpendicular magnetic anisotropies

    Get PDF
    Nanomagnetic logic (NML) has attracted attention during the last two decades due to its promise of high energy efficiency combined with non-volatility. Data transmission in NML relies on Bennett clocking through dipole interaction between neighboring nanomagnetic bits. This paper uses a fully coupled finite element model to simulate Bennett clocking based on strain-mediated multiferroic system for Ni, CoFeB and Terfenol-D with perpendicular magnetic anisotropies. Simulation results demonstrate that Terfenol-D system has the highest energy efficiency, which is 2 orders of magnitude more efficient than Ni and CoFeB. However, the high efficiency is associated with switching incoherency due to its large magnetostriction coefficient. It is also suggested that the CoFeB clocking system is slower and has lower bit-density than in Ni or Terfenol-D systems due to its large dipole coupling. Moreover, we demonstrate that the precessional perpendicular switching and the Bennett clocking can be achieved using the same strain-mediated multiferroic architecture with different voltage pulsing. This study opens new possibilities to an all-spin in-memory computing system

    Determination of the chemical potential using energy-biased sampling

    Full text link
    An energy-biased method to evaluate ensemble averages requiring test-particle insertion is presented. The method is based on biasing the sampling within the subdomains of the test-particle configurational space with energies smaller than a given value freely assigned. These energy-wells are located via unbiased random insertion over the whole configurational space and are sampled using the so called Hit&Run algorithm, which uniformly samples compact regions of any shape immersed in a space of arbitrary dimensions. Because the bias is defined in terms of the energy landscape it can be exactly corrected to obtain the unbiased distribution. The test-particle energy distribution is then combined with the Bennett relation for the evaluation of the chemical potential. We apply this protocol to a system with relatively small probability of low-energy test-particle insertion, liquid argon at high density and low temperature, and show that the energy-biased Bennett method is around five times more efficient than the standard Bennett method. A similar performance gain is observed in the reconstruction of the energy distribution.Comment: 10 pages, 4 figure

    Comparison of free energy estimators and their dependence on dissipated work

    Full text link
    The estimate of free energy changes based on Bennett's acceptance ratio method is examined in several limiting cases and compared with other estimates based on the Jarzynski equality and on the Crooks relation. While the absolute amount of dissipated work, defined as the surplus of average work over the free energy difference, limits the practical applicability of Jarzynski's and Crooks' methods, the reliability of Bennett's approach is restricted by the difference of the dissipated works in the forward and the backward process. We illustrate these points by considering a Gaussian chain and a hairpin chain which both are extended during the forward and accordingly compressed during the backward protocol. The reliability of the Crooks relation predominantly depends on the sample size; for the Jarzynski estimator the slowness of the work protocol is crucial, and the Bennett method is shown to give precise estimates irrespective of the pulling speed and sample size as long as the dissipated works are the same for the forward and the backward process as it is the case for Gaussian work distributions. With an increasing dissipated work difference the Bennett estimator also acquires a bias which increases roughly in proportion to this difference. A substantial simplification of the Bennett estimator is provided by the 1/2-formula which expresses the free energy difference by the algebraic average of the Jarzynski estimates for the forward and the backward processes. It agrees with the Bennett estimate in all cases when the Jarzynski and the Crooks estimates fail to give reliable results
    • …
    corecore