3,590 research outputs found
Simple Proof of Security of the BB84 Quantum Key Distribution Protocol
We prove the security of the 1984 protocol of Bennett and Brassard (BB84) for
quantum key distribution. We first give a key distribution protocol based on
entanglement purification, which can be proven secure using methods from Lo and
Chau's proof of security for a similar protocol. We then show that the security
of this protocol implies the security of BB84. The entanglement-purification
based protocol uses Calderbank-Shor-Steane (CSS) codes, and properties of these
codes are used to remove the use of quantum computation from the Lo-Chau
protocol.Comment: 5 pages, Latex, minor changes to improve clarity and fix typo
Teleportation is necessary for faithful quantum state transfer through noisy channels of maximal rank
Quantum teleportation enables deterministic and faithful transmission of
quantum states, provided a maximally entangled state is pre-shared between
sender and receiver, and a one-way classical channel is available. Here, we
prove that these resources are not only sufficient, but also necessary, for
deterministically and faithfully sending quantum states through any fixed noisy
channel of maximal rank, when a single use of the cannel is admitted. In other
words, for this family of channels, there are no other protocols, based on
different (and possibly cheaper) sets of resources, capable of replacing
quantum teleportation.Comment: 4 pages, comments are welcom
Remote State Preparation
Quantum teleportation uses prior entanglement and forward classical
communication to transmit one instance of an unknown quantum state. Remote
state preparation (RSP) has the same goal, but the sender knows classically
what state is to be transmitted. We show that the asymptotic classical
communication cost of RSP is one bit per qubit - half that of teleportation -
and becomes even less when transmitting part of a known entangled state. We
explore the tradeoff between entanglement and classical communication required
for RSP, and discuss RSP capacities of general quantum channels.Comment: 4 pages including 1 epsf figure; v3 has an additional author and
discusses relation to work of Devetak and Berger (quant-ph/0102123); v4
improves low-entanglement protocols without back communication to perform as
well as low-entanglement protocols with back communication; v5 (journal
version) has a few small change
Quantum Reverse Shannon Theorem
Dual to the usual noisy channel coding problem, where a noisy (classical or
quantum) channel is used to simulate a noiseless one, reverse Shannon theorems
concern the use of noiseless channels to simulate noisy ones, and more
generally the use of one noisy channel to simulate another. For channels of
nonzero capacity, this simulation is always possible, but for it to be
efficient, auxiliary resources of the proper kind and amount are generally
required. In the classical case, shared randomness between sender and receiver
is a sufficient auxiliary resource, regardless of the nature of the source, but
in the quantum case the requisite auxiliary resources for efficient simulation
depend on both the channel being simulated, and the source from which the
channel inputs are coming. For tensor power sources (the quantum generalization
of classical IID sources), entanglement in the form of standard ebits
(maximally entangled pairs of qubits) is sufficient, but for general sources,
which may be arbitrarily correlated or entangled across channel inputs,
additional resources, such as entanglement-embezzling states or backward
communication, are generally needed. Combining existing and new results, we
establish the amounts of communication and auxiliary resources needed in both
the classical and quantum cases, the tradeoffs among them, and the loss of
simulation efficiency when auxiliary resources are absent or insufficient. In
particular we find a new single-letter expression for the excess forward
communication cost of coherent feedback simulations of quantum channels (i.e.
simulations in which the sender retains what would escape into the environment
in an ordinary simulation), on non-tensor-power sources in the presence of
unlimited ebits but no other auxiliary resource. Our results on tensor power
sources establish a strong converse to the entanglement-assisted capacity
theorem.Comment: 35 pages, to appear in IEEE-IT. v2 has a fixed proof of the Clueless
Eve result, a new single-letter formula for the "spread deficit", better
error scaling, and an improved strong converse. v3 and v4 each make small
improvements to the presentation and add references. v5 fixes broken
reference
Remote preparation of quantum states
Remote state preparation is the variant of quantum state teleportation in
which the sender knows the quantum state to be communicated. The original paper
introducing teleportation established minimal requirements for classical
communication and entanglement but the corresponding limits for remote state
preparation have remained unknown until now: previous work has shown, however,
that it not only requires less classical communication but also gives rise to a
trade-off between these two resources in the appropriate setting. We discuss
this problem from first principles, including the various choices one may
follow in the definitions of the actual resources. Our main result is a general
method of remote state preparation for arbitrary states of many qubits, at a
cost of 1 bit of classical communication and 1 bit of entanglement per qubit
sent. In this "universal" formulation, these ebit and cbit requirements are
shown to be simultaneously optimal by exhibiting a dichotomy. Our protocol then
yields the exact trade-off curve for arbitrary ensembles of pure states and
pure entangled states (including the case of incomplete knowledge of the
ensemble probabilities), based on the recently established quantum-classical
trade-off for quantum data compression. The paper includes an extensive
discussion of our results, including the impact of the choice of model on the
resources, the topic of obliviousness, and an application to private quantum
channels and quantum data hiding.Comment: 21 pages plus 2 figures (eps), revtex4. v2 corrects some errors and
adds obliviousness discussion. v3 has section VI C deleted and various minor
oversights correcte
1082 Free-breathing single-shot DENSE myocardial strain imaging using deformable registration
Free-breathing scans are often desirable in patients who find breath-holding difficult. We present a new approach for free-breathing myocardial strain imaging with displacement-encoding (DENSE) [1]. It acquires images with a single-shot sequence and removes respiratory motion using deformable registration
Entanglement properties of optical coherent states under amplitude damping
Through concurrence, we characterize the entanglement properties of optical
coherent-state qubits subject to an amplitude damping channel. We investigate
the distillation capabilities of known error correcting codes and obtain upper
bounds on the entanglement depending on the non-orthogonality of the coherent
states and the channel damping parameter. This work provides a first, full
quantitative analysis of these photon-loss codes which are naturally
reminiscent of the standard qubit codes against Pauli errors.Comment: 7 pages, 6 figures. Revised version with small corrections; main
results remain unaltere
- …