518 research outputs found

    Relationship between tumour PTEN/Akt/COX-2 expression, inflammatory response and survival in patients with colorectal cancer

    Get PDF
    In patients with colorectal cancer (CRC), local and systemic inflammatory responses have been extensively reported to associate with cancer survival. However, the specific signalling pathways responsible for inflammatory responses are not clear. The PTEN/Akt pathway is a plausible candidate as it may play a role in mediating inflammation via COX-2, and has been associated with cancer progression. This study therefore examined the relationship between tumour PTEN/Akt/COX-2 expression, inflammatory responses and survival in CRC patients using a tissue microarray. In 201 CRC patients, activation of tumour-specific PTEN/Akt significantly associated with poorer CSS (12.0yrs v 7.3yrs, P=0.032), poorer differentiation (P=0.032), venous invasion (P=0.008) and peritoneal involvement (P=0.004). Patients were stratified for peri-nuclear expression of COX-2 to examine associations with inflammatory responses. In patients with absent peri-nuclear COX-2 expression, activation of tumour-specific PTEN/Akt significantly associated with poorer CSS (11.9yrs v 5.4yrs, P=0.001), poorer differentiation (P=0.018), venous invasion (P=0.003) and peritoneal involvement (P=0.001). However, no associations were seen with either the local or systemic inflammatory responses. In CRC patients, tumour-specific PTEN/Akt pathway activation was significantly associated with poorer CSS, particularly when peri-nuclear COX-2 expression was absent. However, activation of the PTEN/Akt pathway appears not to be responsible for the regulation of inflammatory responses

    The relationship between members of the canonical NF-κB pathway, components of tumour microenvironment and survival in patients with invasive ductal breast cancer

    Get PDF
    The aim of the present study was to examine the relationship between tumour NF-κB activation, tumour microenvironment including local inflammatory response (LIR) and cancer-specific survival in patients with operable ductal breast cancer. Immunohistochemistry (tissue microarray of 376 patients) and western blotting (MCF7 and MDA-MB-231 breast cancer cells) was performed to assess expression of key members of the canonical NF-κB pathway (inhibitory kappa B kinase (IKKβ) and phosphorylated p65 Ser-536 (p-p65)). Following silencing of IKKβ, cell viability and apoptosis was assessed in both MCF7 and MDA-MB-231 cell lines. P-p65 was associated with cancer-specific survival (CSS) (nuclear P=0.042 and total P=0.025). High total p-p65 was associated with increase grade tumour grade (P=0.010), ER positivity (P=0.023), molecular subtype (P=0.005), lower Klintrup- Makinen grade (P=0.013) and decreased CD138 count (P=0.032). On multivariate analysis, total p-p65 expression independently associated with poorer CSS (P=0.020). In vitro work demonstrated that the canonical NF-κB pathway was inducible by exposure to TNFα in ER-positive MCF7 cells and to a lesser extent in ER-negative MDAMB- 231 cells. Reduction of IKKβ expression by siRNA transfection increased levels of apoptosis and reduced cell viability in both MCF7 (P= 0.001, P=0.002, respectively). This is consistent with the hypothesis that canonical IKKβ-NF-κB signalling drives tumour survival. These results suggest that activation of the canonical NF-κB pathway is an important determinant of poor outcome in patients with invasive ductal breast cancer

    Type 2 Diabetes Risk Alleles Are Associated With Reduced Size at Birth

    Get PDF
    OBJECTIVE: Low birth weight is associated with an increased risk of type 2 diabetes. The mechanisms underlying this association are unknown and may represent intrauterine programming or two phenotypes of one genotype. The fetal insulin hypothesis proposes that common genetic variants that reduce insulin secretion or action may predispose to type 2 diabetes and also reduce birth weight, since insulin is a key fetal growth factor. We tested whether common genetic variants that predispose to type 2 diabetes also reduce birth weight. RESEARCH DESIGN AND METHODS: We genotyped single-nucleotide polymorphisms (SNPs) at five recently identified type 2 diabetes loci (CDKAL1, CDKN2A/B, HHEX-IDE, IGF2BP2, and SLC30A8) in 7,986 mothers and 19,200 offspring from four studies of white Europeans. We tested the association between maternal or fetal genotype at each locus and birth weight of the offspring. RESULTS: We found that type 2 diabetes risk alleles at the CDKAL1 and HHEX-IDE loci were associated with reduced birth weight when inherited by the fetus (21 g [95% CI 11-31], P = 2 x 10(-5), and 14 g [4-23], P = 0.004, lower birth weight per risk allele, respectively). The 4% of offspring carrying four risk alleles at these two loci were 80 g (95% CI 39-120) lighter at birth than the 8% carrying none (P(trend) = 5 x 10(-7)). There were no associations between birth weight and fetal genotypes at the three other loci or maternal genotypes at any locus. CONCLUSIONS: Our results are in keeping with the fetal insulin hypothesis and provide robust evidence that common disease-associated variants can alter size at birth directly through the fetal genotype

    Selenium hyperaccumulation offers protection from cell disruptor herbivores

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hyperaccumulation, the rare capacity of certain plant species to accumulate toxic trace elements to levels several orders of magnitude higher than other species growing on the same site, is thought to be an elemental defense mechanism against herbivores and pathogens. Previous research has shown that selenium (Se) hyperaccumulation protects plants from a variety of herbivores and pathogens. Selenium hyperaccumulating plants sequester Se in discrete locations in the leaf periphery, making them potentially more susceptible to some herbivore feeding modes than others. In this study we investigate the protective function of Se in the Se hyperaccumulators <it>Stanleya pinnata </it>and <it>Astragalus bisulcatus </it>against two cell disrupting herbivores, the western flower thrips (<it>Frankliniella occidentalis</it>) and the two-spotted spider mite (<it>Tetranychus urticae</it>).</p> <p>Results</p> <p><it>Astragalus bisulcatus </it>and <it>S. pinnata </it>with high Se concentrations (greater than 650 mg Se kg<sup>-1</sup>) were less subject to thrips herbivory than plants with low Se levels (less than 150 mg Se kg<sup>-1</sup>). Furthermore, in plants containing elevated Se levels, leaves with higher concentrations of Se suffered less herbivory than leaves with less Se. Spider mites also preferred to feed on low-Se <it>A. bisulcatus </it>and <it>S. pinnata </it>plants rather than high-Se plants. Spider mite populations on <it>A. bisulcatus </it>decreased after plants were given a higher concentration of Se. Interestingly, spider mites could colonize <it>A. bisulcatus </it>plants containing up to 200 mg Se kg<sup>-1 </sup>dry weight, concentrations which are toxic to many other herbivores. Selenium distribution and speciation studies using micro-focused X-ray fluorescence (μXRF) mapping and Se K-edge X-ray absorption spectroscopy revealed that the spider mites accumulated primarily methylselenocysteine, the relatively non-toxic form of Se that is also the predominant form of Se in hyperaccumulators.</p> <p>Conclusions</p> <p>This is the first reported study investigating the protective effect of hyperaccumulated Se against cell-disrupting herbivores. The finding that Se protected the two hyperaccumulator species from both cell disruptors lends further support to the elemental defense hypothesis and increases the number of herbivores and feeding modes against which Se has shown a protective effect. Because western flower thrips and two-spotted spider mites are widespread and economically important herbivores, the results from this study also have potential applications in agriculture or horticulture, and implications for the management of Se-rich crops.</p

    High IKKα expression is associated with reduced time to recurrence and cancer specific survival in oestrogen receptor (ER)-positive breast cancer

    Get PDF
    The aim of our study was to examine the relationship between tumour IKKα expression and breast cancer recurrence and survival. Immunohistochemistry was employed in a discovery and a validation tissue microarray to assess the association of tumour IKKα expression and clinico-pathological characteristics. After siRNA-mediated silencing of IKKα, cell viability and apoptosis were assessed in MCF7 and MDA-MB-231 breast cancer cells. In both the discovery and validation cohorts, associations observed between IKKα and clinical outcome measures were potentiated in oestrogen receptor (ER) positive Luminal A tumours. In the discovery cohort, cytoplasmic IKKα was associated with disease-free survival (p = 0.029) and recurrence-free survival on tamoxifen (p < 0.001) in Luminal A tumours. Nuclear IKKα and a combination of cytoplasmic and nuclear IKKα (total tumour cell IKKα) were associated with cancer-specific survival (p = 0.012 and p = 0.007, respectively) and recurrence-free survival on tamoxifen (p = 0.013 and p < 0.001, respectively) in Luminal A tumours. In the validation cohort, cytoplasmic IKKα was associated with cancer-specific survival (p = 0.023), disease-free survival (p = 0.002) and recurrence-free survival on tamoxifen (p = 0.009) in Luminal A tumours. Parallel experiment with breast cancer cells in vitro demonstrated the non-canonical NF-κB pathway was inducible by exposure to lymphotoxin in ER-positive MCF7 cells and not in ER-negative MDA-MB-231 cells. Reduction in IKKα expression by siRNA transfection increased levels of apoptosis and reduced cell viability in MCF7 but not in MDA-MB-231 cells. IKKα is an important determinant of poor outcome in patients with ER-positive invasive ductal breast cancer and thus may represent a potential therapeutic target

    BDNF Promoter–Mediated β-Galactosidase Expression in the Olfactory Epithelium and Bulb

    Get PDF
    The neurotrophin brain-derived neurotrophic factor (BDNF) has been implicated in the generation and differentiation of new olfactory sensory neurons (OSNs) and in the regulation of branching of OSN axons in their target glomeruli. However, previous reports of BDNF mRNA and protein expression in olfactory epithelium and olfactory bulb (OB) have been inconsistent, raising questions on the proposed roles for BDNF. Here, we report on β-galactosidase (β-gal) expression in adult gene-targeted mice where the BDNF promoter drives expression of the Escherichia coli lacZ gene (BDNFlacZneo mice). We find that β-gal is expressed in a small subset of OSNs with axons that reach the olfactory nerve layers throughout the OB. In the OB, we find expression of β-gal in γ-aminobutyric acidergic but not dopaminergic periglomerular cells and external tufted cells and in interneurons located in the mitral cell layer. Our results are inconsistent with the regulation of generation and differentiation of new OSNs elicited by the release of BDNF from horizontal basal cells. The results are consistent with a role for BDNF in competitive branching of OSN axons within the glomeruli of the OB

    Melanoma cells break down LPA to establish local gradients that drive chemotactic dispersal.

    Get PDF
    The high mortality of melanoma is caused by rapid spread of cancer cells, which occurs unusually early in tumour evolution. Unlike most solid tumours, thickness rather than cytological markers or differentiation is the best guide to metastatic potential. Multiple stimuli that drive melanoma cell migration have been described, but it is not clear which are responsible for invasion, nor if chemotactic gradients exist in real tumours. In a chamber-based assay for melanoma dispersal, we find that cells migrate efficiently away from one another, even in initially homogeneous medium. This dispersal is driven by positive chemotaxis rather than chemorepulsion or contact inhibition. The principal chemoattractant, unexpectedly active across all tumour stages, is the lipid agonist lysophosphatidic acid (LPA) acting through the LPA receptor LPAR1. LPA induces chemotaxis of remarkable accuracy, and is both necessary and sufficient for chemotaxis and invasion in 2-D and 3-D assays. Growth factors, often described as tumour attractants, cause negligible chemotaxis themselves, but potentiate chemotaxis to LPA. Cells rapidly break down LPA present at substantial levels in culture medium and normal skin to generate outward-facing gradients. We measure LPA gradients across the margins of melanomas in vivo, confirming the physiological importance of our results. We conclude that LPA chemotaxis provides a strong drive for melanoma cells to invade outwards. Cells create their own gradients by acting as a sink, breaking down locally present LPA, and thus forming a gradient that is low in the tumour and high in the surrounding areas. The key step is not acquisition of sensitivity to the chemoattractant, but rather the tumour growing to break down enough LPA to form a gradient. Thus the stimulus that drives cell dispersal is not the presence of LPA itself, but the self-generated, outward-directed gradient

    A study of association between common variation in the growth hormone-chorionic somatomammotropin hormone gene cluster and adult fasting insulin in a UK Caucasian population

    Get PDF
    BACKGROUND: Reduced growth during infancy is associated with adult insulin resistance. In a UK Caucasian cohort, the CSH1.01 microsatellite polymorphism in the growth hormone-chorionic somatomammotropin hormone gene cluster was recently associated with increases in adult fasting insulin of approximately 23 pmol/l for TT homozygote males compared to D1D1 or D2D2 homozygotes (P = 0.001 and 0.009; n = 206 and 92, respectively), but not for females. TT males additionally had a 547-g lower weight at 1 year (n = 270; P = 0.008) than D2D2 males. We sought to replicate these data in healthy UK Caucasian subjects. We genotyped 1396 subjects (fathers, mothers and children) from a consecutive birth study for the CSH1.01 marker and analysed genotypes for association with 1-year weight in boys and fasting insulin in fathers. RESULTS: We found no evidence for association of CSH1.01 genotype with adult male fasting insulin concentrations (TT/D1D1 P = 0.38; TT/D2D2 P = 0.18) or weight at 1 year in boys (TT/D1D1 P = 0.76; TT/D2D2 P = 0.85). For fasting insulin, our data can exclude the previously observed effect sizes as the 95 % confidence intervals for the differences observed in our study exclude increases in fasting insulin of 9.0 and 12.6 pmol/l for TT relative to D1D1 and D2D2 homozygotes, respectively. Whilst we have fewer data on boys' 1-year weight than the original study, our data can exclude a reduction in 1-year weight greater than 557 g for TT relative to D2D2 homozygotes. CONCLUSION: We have not found association of the CSH1.01 genotype with fasting insulin or weight at 1 year. We conclude that the original study is likely to have over-estimated the effect size for fasting insulin, or that the difference in results reflects the younger age of subjects in this study relative to those in the previous study
    corecore