34,302 research outputs found

    Handbook of noise ratings

    Get PDF
    Handbook announced in Tech Brief is compendium of information describing multifarious noise methods now in use. Reference material gives user better access to definitions, application, and calculation procedures of current noise rating methods

    Study of the effects of the Doppler shift on perceived noisiness

    Get PDF
    Judgment of effects of Doppler shifts on perceived noisiness of aircraft made by subjects in anechoic chambe

    Effects of interior aircraft noise on speech intelligibility and annoyance

    Get PDF
    Recordings of the aircraft ambiance from ten different types of aircraft were used in conjunction with four distinct speech interference tests as stimuli to determine the effects of interior aircraft background levels and speech intelligibility on perceived annoyance in 36 subjects. Both speech intelligibility and background level significantly affected judged annoyance. However, the interaction between the two variables showed that above an 85 db background level the speech intelligibility results had a minimal effect on annoyance ratings. Below this level, people rated the background as less annoying if there was adequate speech intelligibility

    Handbook of aircraft noise metrics

    Get PDF
    Information is presented on 22 noise metrics that are associated with the measurement and prediction of the effects of aircraft noise. Some of the instantaneous frequency weighted sound level measures, such as A-weighted sound level, are used to provide multiple assessment of the aircraft noise level. Other multiple event metrics, such as day-night average sound level, were designed to relate sound levels measured over a period of time to subjective responses in an effort to determine compatible land uses and aid in community planning. The various measures are divided into: (1) instantaneous sound level metrics; (2) duration corrected single event metrics; (3) multiple event metrics; and (4) speech communication metrics. The scope of each measure is examined in terms of its: definition, purpose, background, relationship to other measures, calculation method, example, equipment, references, and standards

    Classical communication and non-classical fidelity of quantum teleportation

    Full text link
    In quantum teleportation, the role of entanglement has been much discussed. It is known that entanglement is necessary for achieving non-classical teleportation fidelity. Here we focus on the amount of classical communication that is necessary to obtain non-classical fidelity in teleportation. We quantify the amount of classical communication that is sufficient for achieving non-classical fidelity for two independent 1-bit and single 2-bits noisy classical channels. It is shown that on average 0.208 bits of classical communication is sufficient to get non-classical fidelity. We also find the necessary amount of classical communication in case of isotropic transformation. Finally we study how the amount of sufficient classical communication increases with weakening of entanglement used in the teleportation process.Comment: Accepted in Quantum Info. Proces

    Quantum multiparty key distribution protocol without use of entanglement

    Full text link
    We propose a quantum key distribution (QKD) protocol that enables three parties agree at once on a shared common random bit string in presence of an eavesdropper without use of entanglement. We prove its unconditional security and analyze the key rate.Comment: 8 pages, no figur

    Mixedness and teleportation

    Get PDF
    We show that on exceeding a certain degree of mixedness (as quantified by the von Neumann entropy), entangled states become useless for teleporatation. By increasing the dimension of the entangled systems, this entropy threshold can be made arbitrarily close to maximal. This entropy is found to exceed the entropy threshold sufficient to ensure the failure of dense coding.Comment: 6 pages, no figure

    Quantifying nonorthogonality

    Get PDF
    An exploratory approach to the possibility of analyzing nonorthogonality as a quantifiable property is presented. Three different measures for the nonorthogonality of pure states are introduced, and one of these measures is extended to single-particle density matrices using methods that are similar to recently introduced techniques for quantifying entanglement. Several interesting special cases are considered. It is pointed out that a measure of nonorthogonality can meaningfully be associated with a single mixed quantum state. It is then shown how nonorthogonality can be unlocked with classical information; this analysis reveals interesting inequalities and points to a number of connections between nonorthogonality and entanglement.Comment: Accepted for publication in Phys. Rev.

    Information filtering via preferential diffusion

    Get PDF
    Recommender systems have shown great potential to address information overload problem, namely to help users in finding interesting and relevant objects within a huge information space. Some physical dynamics, including heat conduction process and mass or energy diffusion on networks, have recently found applications in personalized recommendation. Most of the previous studies focus overwhelmingly on recommendation accuracy as the only important factor, while overlook the significance of diversity and novelty which indeed provide the vitality of the system. In this paper, we propose a recommendation algorithm based on the preferential diffusion process on user-object bipartite network. Numerical analyses on two benchmark datasets, MovieLens and Netflix, indicate that our method outperforms the state-of-the-art methods. Specifically, it can not only provide more accurate recommendations, but also generate more diverse and novel recommendations by accurately recommending unpopular objects.Comment: 12 pages, 10 figures, 2 table
    corecore