394 research outputs found

    Birefringence of interferential mirrors at normal incidence Experimental and computational study

    Full text link
    In this paper we present a review of the existing data on interferential mirror birefringence. We also report new measurements of two sets of mirrors that confirm that mirror phase retardation per reflection decreases when mirror reflectivity increases. We finally developed a computational code to calculate the expected phase retardation per reflection as a function of the total number of layers constituting the mirror. Different cases have been studied and we have compared computational results with the trend of the experimental data. Our study indicates that the origin of the mirror intrinsic birefringence can be ascribed to the reflecting layers close to the substrate.Comment: To be published in Applied Physics

    Condensation in nongeneric trees

    Full text link
    We study nongeneric planar trees and prove the existence of a Gibbs measure on infinite trees obtained as a weak limit of the finite volume measures. It is shown that in the infinite volume limit there arises exactly one vertex of infinite degree and the rest of the tree is distributed like a subcritical Galton-Watson tree with mean offspring probability m<1m<1. We calculate the rate of divergence of the degree of the highest order vertex of finite trees in the thermodynamic limit and show it goes like (1m)N(1-m)N where NN is the size of the tree. These trees have infinite spectral dimension with probability one but the spectral dimension calculated from the ensemble average of the generating function for return probabilities is given by 2β22\beta -2 if the weight wnw_n of a vertex of degree nn is asymptotic to nβn^{-\beta}.Comment: 57 pages, 14 figures. Minor change

    High speed single pixel imaging with advanced microLED digital light projector

    Get PDF
    We demonstrate high speed single pixel imaging using an advanced microLED-on-CMOS array. We show 128x128 pixel image reconstruction at an effective frame rate of 3.8fps and lower resolution reconstructions at over 120fps. The method is demonstrated to be compatible with common compressive imaging techniques

    Towards a unified theory of Sobolev inequalities

    Full text link
    We discuss our work on pointwise inequalities for the gradient which are connected with the isoperimetric profile associated to a given geometry. We show how they can be used to unify certain aspects of the theory of Sobolev inequalities. In particular, we discuss our recent papers on fractional order inequalities, Coulhon type inequalities, transference and dimensionless inequalities and our forthcoming work on sharp higher order Sobolev inequalities that can be obtained by iteration.Comment: 39 pages, made some changes to section 1

    Recent developments in unconventional superconductivity theory

    Full text link
    The review of recent developments in the unconventional superconductivity theory is given. In the fist part I consider the physical origin of the Kerr rotation polarization of light reflected from the surface of superconducting Sr2RuO4Sr_2RuO_4. Then the comparison of magneto-optical responses in superconductors with orbital and spin spontaneous magnetization is presented. The latter result is applied to the estimation of the magneto-optical properties of neutral superfluids with spontaneous magnetization. The second part is devoted to the natural optical activity or gyrotropy properties of noncentrosymmetric metals in their normal and superconducting states. The temperature behavior of the gyrotropy coefficient is compared with the temperature behavior of paramagnetic susceptibility determining the noticeable increase of the paramagnetic limiting field in noncentrosymmetric superconductors. In the last chapter I describe the order parameter and the symmetry of superconducting state in the itinerant ferromagnet with orthorhombic symmetry. Finally the Josephson coupling between two adjacent ferromagnet superconducting domains is discussed.Comment: 15 page

    Correlation dynamics of three spin under a classical dephasing environment

    Full text link
    By starting from the stochastic Hamiltonian of the three correlated spins and modeling their frequency fluctuations as caused by dephasing noisy environments described by Ornstein-Uhlenbeck processes, we study the dynamics of quantum correlations, including entanglement and quantum discord. We prepared initially our open system with Greenberger-Horne-Zeilinger or W state and present the exact solutions for evolution dynamics of entanglement and quantum discord between three spins under both Markovian and non-Markovian regime of this classical noise. By comparison the dynamics of entanglement with that of quantum discord we find that entanglement can be more robust than quantum discord against this noise. It is shown that by considering non-Markovian extensions the survival time of correlations prolong.Comment: 13 pages, 4 figure

    Categorizing Different Approaches to the Cosmological Constant Problem

    Full text link
    We have found that proposals addressing the old cosmological constant problem come in various categories. The aim of this paper is to identify as many different, credible mechanisms as possible and to provide them with a code for future reference. We find that they all can be classified into five different schemes of which we indicate the advantages and drawbacks. Besides, we add a new approach based on a symmetry principle mapping real to imaginary spacetime.Comment: updated version, accepted for publicatio

    Tensor Correlations Measured in 3He(e,e'pp)n

    Full text link
    We have measured the 3He(e,e'pp)n reaction at an incident energy of 4.7 GeV over a wide kinematic range. We identified spectator correlated pp and pn nucleon pairs using kinematic cuts and measured their relative and total momentum distributions. This is the first measurement of the ratio of pp to pn pairs as a function of pair total momentum, ptotp_{tot}. For pair relative momenta between 0.3 and 0.5 GeV/c, the ratio is very small at low ptotp_{tot} and rises to approximately 0.5 at large ptotp_{tot}. This shows the dominance of tensor over central correlations at this relative momentum.Comment: 4 pages, 4 figures, submitted to PR

    Dark Energy and Gravity

    Full text link
    I review the problem of dark energy focusing on the cosmological constant as the candidate and discuss its implications for the nature of gravity. Part 1 briefly overviews the currently popular `concordance cosmology' and summarises the evidence for dark energy. It also provides the observational and theoretical arguments in favour of the cosmological constant as the candidate and emphasises why no other approach really solves the conceptual problems usually attributed to the cosmological constant. Part 2 describes some of the approaches to understand the nature of the cosmological constant and attempts to extract the key ingredients which must be present in any viable solution. I argue that (i)the cosmological constant problem cannot be satisfactorily solved until gravitational action is made invariant under the shift of the matter lagrangian by a constant and (ii) this cannot happen if the metric is the dynamical variable. Hence the cosmological constant problem essentially has to do with our (mis)understanding of the nature of gravity. Part 3 discusses an alternative perspective on gravity in which the action is explicitly invariant under the above transformation. Extremizing this action leads to an equation determining the background geometry which gives Einstein's theory at the lowest order with Lanczos-Lovelock type corrections. (Condensed abstract).Comment: Invited Review for a special Gen.Rel.Grav. issue on Dark Energy, edited by G.F.R.Ellis, R.Maartens and H.Nicolai; revtex; 22 pages; 2 figure
    corecore