212 research outputs found
Effects of infrequent dried distillers grain supplementation on spring-calving cow performance
Feed and supplement costs and the expenses associated with delivery of winter supplements
account for a large proportion of the total operating expenditures for cow-calf
producers. Cattle grazing low-quality dormant native range (<6% crude protein) typically
are unable to consume sufficient protein from the forage base, which limits microbial
activity and forage digestion. Supplemental protein often is required to maintain
cow body weight and body condition score during the last trimester of pregnancy. Low
cow body condition scores at calving are common and may negatively affect lactation,
rebreeding rates, and calf weaning weight. Failure to maintain proper nutritional status
during this period severely affects short-term cow performance, reduces overall herd
productivity, and limits profit potential.
The most effective means of supplying supplemental protein to cows consuming
dormant native range is to provide a small amount of high-protein feedstuff (>30%
crude protein). Dried distillers grains with solubles (DDGS) are a by-product of the
ethanol refining process. Distillers grains supply the recommended 30% crude protein
level, are readily available, and often are favorably priced compared with more traditional
feedstuffs.
With the rising costs of inputs in today’s cow-calf sector, reducing cost is necessary to
maintain viability of the national cowherd. Reducing the frequency of supplementation
results in less labor and fuel use, effectively reducing input costs; however, this is viable
only as long as cow performance is maintained at acceptable levels. Therefore, the objective
of this study was to examine the effects of infrequent supplementation of dried
distillers grains with solubles on cow body weight and body condition score
Achievable rates for the Gaussian quantum channel
We study the properties of quantum stabilizer codes that embed a
finite-dimensional protected code space in an infinite-dimensional Hilbert
space. The stabilizer group of such a code is associated with a symplectically
integral lattice in the phase space of 2N canonical variables. From the
existence of symplectically integral lattices with suitable properties, we
infer a lower bound on the quantum capacity of the Gaussian quantum channel
that matches the one-shot coherent information optimized over Gaussian input
states.Comment: 12 pages, 4 eps figures, REVTe
Quantum state merging and negative information
We consider a quantum state shared between many distant locations, and define
a quantum information processing primitive, state merging, that optimally
merges the state into one location. As announced in [Horodecki, Oppenheim,
Winter, Nature 436, 673 (2005)], the optimal entanglement cost of this task is
the conditional entropy if classical communication is free. Since this quantity
can be negative, and the state merging rate measures partial quantum
information, we find that quantum information can be negative. The classical
communication rate also has a minimum rate: a certain quantum mutual
information. State merging enabled one to solve a number of open problems:
distributed quantum data compression, quantum coding with side information at
the decoder and sender, multi-party entanglement of assistance, and the
capacity of the quantum multiple access channel. It also provides an
operational proof of strong subadditivity. Here, we give precise definitions
and prove these results rigorously.Comment: 23 pages, 3 figure
The influence of nonlinearities on the symmetric hydrodynamic response of a 10,000 TEU Container ship
The prediction of wave-induced motions and loads is of great importance for the design of marine structures. Linear potential flow hydrodynamic models are already used in different parts of the ship design development and appraisal process. However, the industry demands for design innovation and the possibilities offered by modern technology imply the need to also understand the modelling assumptions and associated influences of nonlinear hydrodynamic actions on ship response. At first instance, this paper presents the taxonomy of different Fluid Structure Interaction (FSI) methods that may be used for the assessment of ship motions and loads. Consequently, it documents in a practical way the effects of weakly nonlinear hydrodynamics on the symmetric wave-induced responses for a 10,000TEU Container ship. It is shown that the weakly nonlinear FSI models may be useful for the prediction of symmetric wave-induced loads and responses of such ship not only in way of amidships but also at the extremities of the hull. It is concluded that validation of hydrodynamic radiation and diffraction forces and their respective influence on ship response should be especially considered for those cases where the variations of the hull wetted surface in time may be noticeable
Coherent information analysis of quantum channels in simple quantum systems
The coherent information concept is used to analyze a variety of simple
quantum systems. Coherent information was calculated for the information decay
in a two-level atom in the presence of an external resonant field, for the
information exchange between two coupled two-level atoms, and for the
information transfer from a two-level atom to another atom and to a photon
field. The coherent information is shown to be equal to zero for all
full-measurement procedures, but it completely retains its original value for
quantum duplication. Transmission of information from one open subsystem to
another one in the entire closed system is analyzed to learn quantum
information about the forbidden atomic transition via a dipole active
transition of the same atom. It is argued that coherent information can be used
effectively to quantify the information channels in physical systems where
quantum coherence plays an important role.Comment: 24 pages, 7 figs; Final versiob after minor changes, title changed;
to be published in Phys. Rev. A, September 200
Precise calculation of parity nonconservation in cesium and test of the standard model
We have calculated the 6s-7s parity nonconserving (PNC) E1 transition
amplitude, E_{PNC}, in cesium. We have used an improved all-order technique in
the calculation of the correlations and have included all significant
contributions to E_{PNC}. Our final value E_{PNC} = 0.904 (1 +/- 0.5 %) \times
10^{-11}iea_{B}(-Q_{W}/N) has half the uncertainty claimed in old calculations
used for the interpretation of Cs PNC experiments. The resulting nuclear weak
charge Q_{W} for Cs deviates by about 2 standard deviations from the value
predicted by the standard model.Comment: 24 pages, 8 figure
Efficient and robust entanglement generation in a many-particle system with resonant dipole-dipole interactions
We propose and discuss a scheme for robust and efficient generation of
many-particle entanglement in an ensemble of Rydberg atoms with resonant
dipole-dipole interactions. It is shown that in the limit of complete dipole
blocking, the system is isomorphic to a multimode Jaynes-Cummings model. While
dark-state population transfer is not capable of creating entanglement, other
adiabatic processes are identified that lead to complex, maximally entangled
states, such as the N-particle analog of the GHZ state in a few steps. The
process is robust, works for even and odd particle numbers and the
characteristic time for entanglement generation scales with N^a, with a being
less than unity.Comment: 4 figure
Parity nonconservation in heavy atoms: The radiative correction enhanced by the strong electric field of the nucleus
Parity nonconservation due to the nuclear weak charge is considered. We
demonstrate that the radiative corrections to this effect due to the vacuum
fluctuations of the characteristic size larger than the nuclear radius
and smaller than the electron Compton wave-length are enhanced
because of the strong electric field of the nucleus. The parameter that allows
one to classify the corrections is the large logarithm .
The vacuum polarization contribution is enhanced by the second power of the
logarithm. Although the self-energy and the vertex corrections do not vanish,
they contain only the first power of the logarithm. The value of the radiative
correction is 0.4% for Cs and 0.9% for Tl, Pb, and Bi. We discuss also how the
correction affects the interpretation of the experimental data on parity
nonconservation in atoms.Comment: 4 pages, 3 figures, RevTe
Spin-gravity coupling and gravity-induced quantum phases
External gravitational fields induce phase factors in the wave functions of
particles. The phases are exact to first order in the background gravitational
field, are manifestly covariant and gauge invariant and provide a useful tool
for the study of spin-gravity coupling and of the optics of particles in
gravitational or inertial fields. We discuss the role that spin-gravity
coupling plays in particular problems.Comment: 18 pages, 1 figur
- …