2,954 research outputs found

    Photometric Confirmation of MACHO Large Magellanic Cloud Microlensing Events

    Full text link
    We present previously unpublished photometry of three Large Magellanic Cloud (LMC) microlensing events and show that the new photometry confirms the microlensing interpretation of these events. These events were discovered by the MACHO Project alert system and were also recovered by the analysis of the 5.7 year MACHO data set. This new photometry provides a substantial increase in the signal-to-noise ratio over the previously published photometry and in all three cases, the gravitational microlensing interpretation of these events is strengthened. The new data consist of MACHO-Global Microlensing Alert Network (GMAN) follow-up images from the CTIO 0.9 telescope plus difference imaging photometry of the original MACHO data from the 1.3m "Great Melbourne" telescope at Mt. Stromlo. We also combine microlensing light curve fitting with photometry from high resolution HST images of the source stars to provide further confirmation of these events and to show that the microlensing interpretation of event MACHO-LMC-23 is questionable. Finally, we compare our results with the analysis of Belokurov, Evans & Le Du who have attempted to classify candidate microlensing events with a neural network method, and we find that their results are contradicted by the new data and more powerful light curve fitting analysis for each of the four events considered in this paper. The failure of the Belokurov, Evans & Le Du method is likely to be due to their use of a set of insensitive statistics to feed their neural networks.Comment: 29 pages with 8 included postscript figures, accepted by the Astrophysical Journa

    Exact Performance of Concatenated Quantum Codes

    Get PDF
    When a logical qubit is protected using a quantum error-correcting code, the net effect of coding, decoherence (a physical channel acting on qubits in the codeword) and recovery can be represented exactly by an effective channel acting directly on the logical qubit. In this paper we describe a procedure for deriving the map between physical and effective channels that results from a given coding and recovery procedure. We show that the map for a concatenation of codes is given by the composition of the maps for the constituent codes. This perspective leads to an efficient means for calculating the exact performance of quantum codes with arbitrary levels of concatenation. We present explicit results for single-bit Pauli channels. For certain codes under the symmetric depolarizing channel, we use the coding maps to compute exact threshold error probabilities for achievability of perfect fidelity in the infinite concatenation limit.Comment: An expanded presentation of the analytic methods and results from quant-ph/0111003; 13 pages, 6 figure

    Ring-Contraction Strategy for the Practical, Scalable, Catalytic Asymmetric Synthesis of Versatile γ-Quaternary Acylcyclopentenes

    Get PDF
    Contraction action! A simple protocol for the catalytic asymmetric synthesis of highly functionalized γ-quaternary acylcyclopentenes (see schematic) in up to 91 % overall yield and 92 % ee has been developed. The reaction sequence employs a palladium-catalyzed enantioselective alkylation reaction and exploits the unusual stability of β-hydroxy cycloheptanones to achieve a general and robust method for performing two-carbon ring contractions

    Tunable Indistinguishable Photons From Remote Quantum Dots

    Full text link
    Single semiconductor quantum dots have been widely studied within devices that can apply an electric field. In the most common system, the low energy offset between the InGaAs quantum dot and the surrounding GaAs material limits the magnitude of field that can be applied to tens of kVcm^-1, before carriers tunnel out of the dot. The Stark shift experienced by the emission line is typically 1 meV. We report that by embedding the quantum dots in a quantum well heterostructure the vertical field that can be applied is increased by over an order of magnitude whilst preserving the narrow linewidths, high internal quantum efficiencies and familiar emission spectra. Individual dots can then be continuously tuned to the same energy allowing for two-photon interference between remote, independent, quantum dots

    Quantum search by measurement

    Get PDF
    We propose a quantum algorithm for solving combinatorial search problems that uses only a sequence of measurements. The algorithm is similar in spirit to quantum computation by adiabatic evolution, in that the goal is to remain in the ground state of a time-varying Hamiltonian. Indeed, we show that the running times of the two algorithms are closely related. We also show how to achieve the quadratic speedup for Grover's unstructured search problem with only two measurements. Finally, we discuss some similarities and differences between the adiabatic and measurement algorithms.Comment: 8 pages, 2 figure

    A framework for bounding nonlocality of state discrimination

    Full text link
    We consider the class of protocols that can be implemented by local quantum operations and classical communication (LOCC) between two parties. In particular, we focus on the task of discriminating a known set of quantum states by LOCC. Building on the work in the paper "Quantum nonlocality without entanglement" [BDF+99], we provide a framework for bounding the amount of nonlocality in a given set of bipartite quantum states in terms of a lower bound on the probability of error in any LOCC discrimination protocol. We apply our framework to an orthonormal product basis known as the domino states and obtain an alternative and simplified proof that quantifies its nonlocality. We generalize this result for similar bases in larger dimensions, as well as the "rotated" domino states, resolving a long-standing open question [BDF+99].Comment: 33 pages, 7 figures, 1 tabl

    Open Inflationary Universes in the Induced Gravity Theory

    Full text link
    The induced gravity theory is a variant of Jordan--Brans--Dicke theory where the `dilaton' field possesses a potential. It has the unusual feature that in the presence of a false vacuum there is a {\em stable} static solution with the dilaton field displaced from the minimum of its potential, giving perfect de Sitter expansion. We demonstrate how this solution can be used to implement the open inflationary universe scenario. The necessary second phase of inflation after false vacuum decay by bubble nucleation is driven by the dilaton rolling from the static point to the minimum of its potential. Because the static solution is stable whilst the false vacuum persists, the required evolution occurs for a wide range of initial conditions. As the exterior of the bubble is perfect de Sitter space, there is no problem with fields rolling outside the bubble, as in one of the related models considered by Linde and Mezhlumian, and the expansion rates before and after tunnelling may be similar which prevents problematic high-amplitude super-curvature modes from being generated. Once normalized to the microwave background anisotropies seen by the COBE satellite, the viable models form a one-parameter family for each possible Ω0\Omega_0.Comment: 7 pages RevTeX file with three figures incorporated (uses RevTeX and epsf). Also available by e-mailing ARL, or by WWW at http://star-www.maps.susx.ac.uk/papers/early_papers.htm

    Neuronal Calcium Imaging, Excitability, and Plasticity Changes in the \u3cem\u3eAldh2\u3c/em\u3e\u3csup\u3e-/-\u3c/sup\u3e Mouse Model of Sporadic Alzheimer\u27s Disease

    Get PDF
    BACKGROUND: Dysregulated signaling in neurons and astrocytes participates in pathophysiological alterations seen in the Alzheimer\u27s disease brain, including increases in amyloid-β, hyperphosphorylated tau, inflammation, calcium dysregulation, and oxidative stress. These are often noted prior to the development of behavioral, cognitive, and non-cognitive deficits. However, the extent to which these pathological changes function together or independently is unclear. OBJECTIVE: Little is known about the temporal relationship between calcium dysregulation and oxidative stress, as some reports suggest that dysregulated calcium promotes increased formation of reactive oxygen species, while others support the opposite. Prior work has quantified several key outcome measures associated with oxidative stress in aldehyde dehydrogenase 2 knockout (Aldh2-/-) mice, a non-transgenic model of sporadic Alzheimer\u27s disease. METHODS: Here, we tested the hypothesis that early oxidative stress can promote calcium dysregulation across aging by measuring calcium-dependent processes using electrophysiological and imaging methods and focusing on the afterhyperpolarization (AHP), synaptic activation, somatic calcium, and long-term potentiation in the Aldh2-/- mouse. RESULTS: Our results show a significant age-related decrease in the AHP along with an increase in the slow AHP amplitude in Aldh2-/- animals. Measures of synaptic excitability were unaltered, although significant reductions in long-term potentiation maintenance were noted in the Aldh2-/- animals compared to wild-type. CONCLUSION: With so few changes in calcium and calcium-dependent processes in an animal model that shows significant increases in HNE adducts, Aβ, p-tau, and activated caspases across age, the current findings do not support a direct link between neuronal calcium dysregulation and uncontrolled oxidative stress

    The oxytocin receptor antagonist, Atosiban, activates pro-inflammatory pathways in human amnion via Gαi signalling

    Get PDF
    Oxytocin (OT) plays an important role in the onset of human labour by stimulating uterine contractions and promoting prostaglandin/inflammatory cytokine synthesis in amnion via oxytocin receptor (OTR) coupling. The OTR-antagonist, Atosiban, is widely used as a tocolytic for the management of acute preterm labour. We found that in primary human amniocytes, Atosiban (10 μM) signals via PTX-sensitive Gαi to activate transcription factor NF-κB p65, ERK1/2, and p38 which subsequently drives upregulation of the prostaglandin synthesis enzymes, COX-2 and phospho-cPLA2 and excretion of prostaglandins (PGE2) (n = 6; p < 0.05, ANOVA). Moreover, Atosiban treatment increased expression and excretion of the inflammatory cytokines, IL-6 and CCL5. We also showed that OT-simulated activation of NF-κB, ERK1/2, and p38 and subsequent prostaglandin and inflammatory cytokine synthesis is via Gαi−2 and Gαi−3 but not Gαq, and is not inhibited by Atosiban. Activation or exacerbation of inflammation is not a desirable effect of tocolytics. Therefore therapeutic modulation of the OT/OTR system for clinical management of term/preterm labour should consider the effects of differential G-protein coupling of the OTR and the role of OT or selective OTR agonists/antagonists in activating proinflammatory pathways
    corecore