2,550 research outputs found

    The Present status of our knowledge on the lesser sardines of Indian waters

    Get PDF
    The results of research carried out at Waltair, Mandapam. Tuticorin and Vizhinjam and another centres on the lesser sardines over the past up till 1978 are reviewed in detail. In the twentyyear period from 1958 to 1978 there was an increasing trend of production of these fishes along the different coasts of India, the average annual landings nearly doubling from 36,000 t in 1958-67 to 70,000 t in 1968-78. The bulk of the catches came from Tamil Nadu, including Pondicherry, (32.6%), Kerala (32.2%) and Andhra Pradesh (26.5%)- Fishing was mostly by the labour-intensive traditional methods in close-shore waters, better catches coming from 30-55 m depths. Shore seines, boat seines and gill nets were the principal gears employed in the fishery though gill nets were the most effective

    Entangled photon pairs produced by a quantum dot strongly coupled to a microcavity

    Full text link
    We show theoretically that entangled photon pairs can be produced on demand through the biexciton decay of a quantum dot strongly coupled to the modes of a photonic crystal. The strong coupling allows to tune the energy of the mixed exciton-photon (polariton) eigenmodes, and to overcome the natural splitting existing between the exciton states coupled with different linear polarizations of light. Polariton states are moreover well protected against dephasing due to their lifetime ten to hundred times shorter than that of a bare exciton. Our analysis shows that the scheme proposed can be achievable with the present technology

    Using of small-scale quantum computers in cryptography with many-qubit entangled states

    Full text link
    We propose a new cryptographic protocol. It is suggested to encode information in ordinary binary form into many-qubit entangled states with the help of a quantum computer. A state of qubits (realized, e.g., with photons) is transmitted through a quantum channel to the addressee, who applies a quantum computer tuned to realize the inverse unitary transformation decoding of the message. Different ways of eavesdropping are considered, and an estimate of the time needed for determining the secret unitary transformation is given. It is shown that using even small quantum computers can serve as a basis for very efficient cryptographic protocols. For a suggested cryptographic protocol, the time scale on which communication can be considered secure is exponential in the number of qubits in the entangled states and in the number of gates used to construct the quantum network

    Graviton mass and total relative density of mass Omega_tot in Universe

    Full text link
    It is noticed that the total relative density of mass in the Universe Omega_tot should exceed 1, i.e. Omega_tot=1+f^2/6 according to the field relativistic theory of gravity (RTG), which is free of the cosmological singularity and which provides the Euclidean character for the 3-dimensional space. Here f is the ratio of the graviton mass m_g to the contemporary value of the ``Hubble mass'' m^0_H=\hbar H_0/c^2\simeq 3,8\cdot 10^{-66}h(g) (h=0,71\pm0,07). Applying results of the experimental data processing presented in [1] an upper limit for the graviton mass is established as m_g\leq 3,2\cdot 10^{-66}g at the 95% confidence level.Comment: 8 pages, latex fil

    Third quantization of f(R)f(R)-type gravity

    Full text link
    We examine the third quantization of f(R)f(R)-type gravity, based on its effective Lagrangian in the case of a flat Friedmann-Lemaitre-Robertson-Walker metric. Starting from the effective Lagrangian, we execute a suitable change of variable and the second quantization, and we obtain the Wheeler-DeWitt equation. The third quantization of this theory is considered. And the uncertainty relation of the universe is investigated in the example of f(R)f(R)-type gravity, where f(R)=R2f(R)=R^2. It is shown, when the time is late namely the scale factor of the universe is large, the spacetime does not contradict to become classical, and, when the time is early namely the scale factor of the universe is small, the quantum effects are dominating.Comment: 9 pages, Arbitrary constants in (4.19) are changed to arbitrary functions of φ\varphi. Conclusions are not changed. References are added. Typos are correcte

    Separable approximation for mixed states of composite quantum systems

    Get PDF
    We describe a purely algebraic method for finding the best separable approximation to a mixed state of a composite 2x2 quantum system, consisting of a decomposition of the state into a linear combination of a mixed separable part and a pure entangled one. We prove that, in a generic case, the weight of the pure part in the decomposition equals the concurrence of the state.Comment: 13 pages, no figures; minor changes; accepted for publication in PR

    Evolution of a global string network in a matter dominated universe

    Get PDF
    We evolve the network of global strings in the matter-dominated universe by means of numerical simulations. The existence of the scaling solution is confirmed as in the radiation-dominated universe but the scaling parameter ξ\xi takes a slightly smaller value, ξ0.6±0.1\xi \simeq 0.6 \pm 0.1, which is defined as ξ=ρst2/μ\xi = \rho_{s} t^{2} / \mu with ρs\rho_{s} the energy density of global strings and μ\mu the string tension per unit length. The change of ξ\xi from the radiation to the matter-dominated universe is consistent with that obtained by Albrecht and Turok by use of the one-scale model. We also study the loop distribution function and find that it can be well fitted with that predicted by the one-scale model, where the number density nl(t)n_{l}(t) of the loop with the length ll is given by nl(t)=ν/[t2(l+κt)2]n_{l}(t) = \nu/[t^2 (l + \kappa t)^2] with ν0.040\nu \sim 0.040 and κ0.48\kappa \sim 0.48. Thus, the evolution of the global string network in the matter-dominated universe can be well described by the one-scale model as in the radiation-dominated universe.Comment: 10 pages, 5 figure

    Entanglement of electrons in interacting molecules

    Get PDF
    Quantum entanglement is a concept commonly used with reference to the existence of certain correlations in quantum systems that have no classical interpretation. It is a useful resource to enhance the mutual information of memory channels or to accelerate some quantum processes as, for example, the factorization in Shor's Algorithm. Moreover, entanglement is a physical observable directly measured by the von Neumann entropy of the system. We have used this concept in order to give a physical meaning to the electron correlation energy in systems of interacting electrons. The electronic correlation is not directly observable, since it is defined as the difference between the exact ground state energy of the many--electrons Schroedinger equation and the Hartree--Fock energy. We have calculated the correlation energy and compared with the entanglement, as functions of the nucleus--nucleus separation using, for the hydrogen molecule, the Configuration Interaction method. Then, in the same spirit, we have analyzed a dimer of ethylene, which represents the simplest organic conjugate system, changing the relative orientation and distance of the molecules, in order to obtain the configuration corresponding to maximum entanglement.Comment: 15 pages, 7 figures, standard late

    Scaling Property of the global string in the radiation dominated universe

    Get PDF
    We investigate the evolution of the global string network in the radiation dominated universe by use of numerical simulations in 3+1 dimensions. We find that the global string network settles down to the scaling regime where the energy density of global strings, ρs\rho_{s}, is given by ρs=ξμ/t2\rho_{s} = \xi \mu / t^2 with μ\mu the string tension per unit length and the scaling parameter, ξ(0.91.3)\xi \sim (0.9-1.3), irrespective of the cosmic time. We also find that the loop distribution function can be fitted with that predicted by the so-called one scale model. Concretely, the number density, nl(t)n_{l}(t), of the loop with the length, ll, is given by nl(t)=ν/[t3/2(l+κt)5/2]n_{l}(t) = \nu/[t^{3/2} (l + \kappa t)^{5/2}] where ν0.0865\nu \sim 0.0865 and κ\kappa is related with the Nambu-Goldstone(NG) boson radiation power from global strings, PP, as P=κμP = \kappa \mu with κ0.535\kappa \sim 0.535. Therefore, the loop production function also scales and the typical scale of produced loops is nearly the horizon distance. Thus, the evolution of the global string network in the radiation dominated universe can be well described by the one scale model in contrast with that of the local string network.Comment: 18 pages, 9 figures, to appear in Phys. Rev.

    Tendency to Maximum Complexity in a Non-Equilibrium Isolated System

    Full text link
    The time evolution equations of a simplified isolated ideal gas, the "tetrahe- dral" gas, are derived. The dynamical behavior of the LMC complexity [R. Lopez-Ruiz, H. L. Mancini, and X. Calbet, Phys. Lett. A 209, 321 (1995)] is studied in this system. In general, it is shown that the complexity remains within the bounds of minimum and maximum complexity. We find that there are certain restrictions when the isolated "tetrahedral" gas evolves towards equilibrium. In addition to the well-known increase in entropy, the quantity called disequilibrium decreases monotonically with time. Furthermore, the trajectories of the system in phase space approach the maximum complexity.Comment: 22 pages, 0 figures. Published in Phys. Rev. E 63, 066116(9) (2001
    corecore