238 research outputs found

    Mode-coupling theory for structural and conformational dynamics of polymer melts

    Full text link
    A mode-coupling theory for dense polymeric systems is developed which unifyingly incorporates the segmental cage effect relevant for structural slowing down and polymer chain conformational degrees of freedom. An ideal glass transition of polymer melts is predicted which becomes molecular-weight independent for large molecules. The theory provides a microscopic justification for the use of the Rouse theory in polymer melts, and the results for Rouse-mode correlators and mean-squared displacements are in good agreement with computer simulation results.Comment: 4 pages, 3 figures, Phys. Rev. Lett. in pres

    Theory for Superconducting Properties of the Cuprates: Doping Dependence of the Electronic Excitations and Shadow States

    Full text link
    The superconducting phase of the 2D one-band Hubbard model is studied within the FLEX approximation and by using an Eliashberg theory. We investigate the doping dependence of TcT_c, of the gap function Δ(k,ω)\Delta ({\bf k},\omega) and of the effective pairing interaction. Thus we find that TcT_c becomes maximal for 13  %13 \; \% doping. In {\it overdoped} systems TcT_c decreases due to the weakening of the antiferromagnetic correlations, while in the {\it underdoped} systems due to the decreasing quasi particle lifetimes. Furthermore, we find {\it shadow states} below TcT_c which affect the electronic excitation spectrum and lead to fine structure in photoemission experiments.Comment: 10 pages (REVTeX) with 5 figures (Postscript

    Spin susceptibility in bilayered cuprates: resonant magnetic excitations

    Full text link
    We study the momentum and frequency dependence of the dynamical spin susceptibility in the superconducting state of bilayer cuprate superconductors. We show that there exists a resonance mode in the odd as well as the even channel of the spin susceptibility, with the even mode being located at higher energies than the odd mode. We demonstrate that this energy splitting between the two modes arises not only from a difference in the interaction, but also from a difference in the free-fermion susceptibilities of the even and odd channels. Moreover, we show that the even resonance mode disperses downwards at deviations from Q=(π,π){\bf Q}=(\pi,\pi). In addition, we demonstrate that there exists a second branch of the even resonance, similar to the recently observed second branch (the QQ^*-mode) of the odd resonance. Finally, we identify the origin of the qualitatively different doping dependence of the even and odd resonance. Our results suggest further experimental test that may finally resolve the long-standing question regarding the origin of the resonance peak.Comment: 8 pages, 5 figure

    Spin Josephson effect in ferromagnet/ferromagnet tunnel junctions

    Full text link
    We consider the tunnel spin current between two ferromagnetic metals from a perspective similar to the one used in superconductor/superconductor tunnel junctions. We use fundamental arguments to derive a Josephson-like spin tunnel current IJspinsin(θ1θ2)I_J^{\rm spin}\propto\sin(\theta_1-\theta_2). Here the phases are associated with the planar contribution to the magnetization, eiθ\sim e^{i\theta}. The crucial step in our analysis is the fact that the zz-component of the spin is canonically conjugate to the phase of the planar contribution: [θ,Sz]=i[\theta,S^z]=i. This is analogous to the commutation relation [ϕ,N]=i[\phi,N]=i in superconductors, where ϕ\phi is the phase associated to the superconducting order parameter and NN is the Cooper pair number operator. We briefly discuss the experimental consequences of our theoretical analysis.Comment: LaTex, seven pages, no figures; version to appear in Europhys. Lett.; in order to make room for a more extended microscopic analysis, the phenomenological discussion contained in v2 was remove

    Theory for the Doping Dependence of Spin Fluctuation Induced Shadow States in High-Tc_{c} Superconductors

    Full text link
    We analyze the doping dependence of the intensity and energetical position of shadow states in high -Tc_{c} superconductors within the 2D Hubbard model and using our recently developed numerical method for the self consistent summation of bubble and ladder diagrams. It is shown that shadow states resulting from short range antiferromagnetic correlations occur for small but finite excitation energies which decrease for decreasing doping, reflecting a dynamically broken symmetry with increasing lifetime. Simultanously, the intensity of these new states increases, the quasiparticle dispersion is strongly flattened, and a pseudogap in the density of states occurs. Finally, we discuss the importance of flat bands at the Fermi level and nesting of the Fermi surface as general prerequisites for the observability of shadow states.Comment: 9 pages (TeX) with 3 figures (Postscript

    Electronic Theory for Bilayer-Effects in High-T_c Superconductors

    Full text link
    The normal and the superconducting state of two coupled CuO_2 layers in the High-T_c superconductors are investigated by using the bilayer Hubbard model, the FLEX approximation on the real frequency axis and the Eliashberg theory. We find that the planes are antiferromagnetically correlated which leads to a strongly enhanced shadow band formation. Furthermore, the inter-layer hopping is renormalized which causes a blocking of the quasi particle inter-plane transfer for low doping concentrations. Finally, the superconducting order parameter is found to have a d_{x^2-y^2} symmetry with significant additional inter-layer contributions.Comment: 5 pages, Revtex, 4 postscript figure

    Electromagnetic Pulse Driven Spin-dependent Currents in Semiconductor Quantum Rings

    Full text link
    We investigate the non-equilibrium charge and spin-dependent currents in a quantum ring with a Rashba spin orbit interaction (SOI) driven by two asymmetric picosecond electromagnetic pulses. The equilibrium persistent charge and persistent spin-dependent currents are investigated as well. It is shown that the dynamical charge and the dynamical spin-dependent currents vary smoothly with a static external magnetic flux and the SOI provides a SU(2) effective flux that changes the phases of the dynamic charge and the dynamic spin-dependent currents. The period of the oscillation of the total charge current with the delay time between the pulses is larger in a quantum ring with a larger radius. The parameters of the pulse fields control to a certain extent the total charge and the total spin-dependent currents. The calculations are applicable to nano-meter rings fabricated in heterojuctions of III-V and II-VI semiconductors containing several hundreds electrons.Comment: 15pages, 5 figure

    Theory for the Interdependence of High-Tc_c Superconductivity and Dynamical Spin Fluctuations

    Full text link
    The doping dependence of the superconducting state for the 2D one-band Hubbard Hamiltonian is determined. By using an Eliashberg-type theory, we find that the gap function Δk\Delta_{\bf k} has a dx2y2d_{x^2-y^2} symmetry in momentum space and Tc_c becomes maximal for 13  %13 \; \% doping. Since we determine the dynamical excitations directly from real frequency axis calculations, we obtain new structures in the angular resolved density of states related to the occurrence of {\it shadow states} below Tc_c. Explaining the anomalous behavior of photoemission and tunneling experiments in the cuprates, we find a strong interplay between dd-wave superconductivity and dynamical spin fluctuations.Comment: 4 pages (REVTeX) with 4 figures (Postscript

    Electronic Theory for the Transition from Fermi-Liquid to Non-Fermi-Liquid Behavior in High-Tc_{c} Superconductors

    Full text link
    We analyze the breakdown of Fermi-liquid behavior within the 2D Hubbard model as function of doping using our recently developed numerical method for the self consistent summation of bubble and ladder diagrams. For larger doping concentrations the system behaves like a conventional Fermi-liquid and for intermediate doping similar to a marginal Fermi-liquid. However, for smaller doping pronounced deviations from both pictures occur which are due to the increasing importance of the short range antiferromagnetic spin fluctuations. This is closely related to the experimental observed shadow states in the normal state of high-TcT_c superconductors. Furthermore, we discuss the implications of our results for transport experiments.Comment: 11 pages (REVTeX) with 4 figures (Postscript

    Theory for the Ultrafast Structural Response of optically excited small clusters: Time-dependence of the Ionization Potential

    Full text link
    Combining an electronic theory with molecular dynamics simulations we present results for the ultrafast structural changes in small clusters. We determine the time scale for the change from the linear to a triangular structure after the photodetachment process Ag3Ag3_3^- \rightarrow {\rm Ag}_3. We show that the time-dependent change of the ionization potential reflects in detail the internal degrees of freedom, in particular coherent and incoherent motion, and that it is sensitive to the initial temperature. We compare with experiment and point out the general significance of our results.Comment: 10 pages, Revtex, 3 postscript figure
    corecore