203 research outputs found

    Role of the cooling rate in the stability of the superconducting phase of (TMTSF)_2ClO_4

    Full text link
    The noncentrosymmetric ClO4_4 anions of the organic superconductor (TMTSF)2_2ClO4_4 order below 24K. The size of domains where the anions are ordered is substantially dependent on the cooling rate which is a key parameter for the stability of the low temperature electronic ground states. We study the effect of the cooling rate on the SC phase within a self consistent approach in the framework of the time dependent Ginzburg-Landau theory taking into account the superconducting fluctuations. We derive the superconducting transition temperature which is found to decrease with increasing cooling rate in agreement with recent experimental data.Comment: 5 pages including one figure. Published online in Europhysics Letter

    Dynamics of open quantum systems

    Get PDF
    The coupling between the states of a system and the continuum into which it is embedded, induces correlations that are especially large in the short time scale. These correlations cannot be calculated by using a statistical or perturbational approach. They are, however, involved in an approach describing structure and reaction aspects in a unified manner. Such a model is the SMEC (shell model embedded in the continuum). Some characteristic results obtained from SMEC as well as some aspects of the correlations induced by the coupling to the continuum are discussed.Comment: 16 pages, 5 figure

    Halo phenomenon in finite many-fermion systems. Atom-positron complexes and large-scale study of atomic nuclei

    Full text link
    The analysis method proposed in Ref. \cite{rotival07a} is applied to characterize halo properties in finite many-fermion systems. First, the versatility of the method is highlighted by applying it to light and medium-mass nuclei as well as to atom-positron and ion-positronium complexes. Second, the dependence of nuclear halo properties on the characteristics of the energy density functional used in self-consistent Hartree-Fock-Bogoliubov calculations is studied. It is found that (a) the low-density behavior of the pairing functional and the regularization/renormalization scheme must be chosen coherently and with care to provide meaningful predictions, (b) the impact of pairing correlations on halo properties is significant and is the result of two competing effects, (c) the detailed characteristics of the pairing functional has however only little importance, (d) halo properties depend significantly on any ingredient of the energy density functional that influences the location of single-particle levels; i.e. the effective mass, the tensor terms and the saturation density of nuclear matter. The latter dependencies give insights to how experimental data on medium-mass drip-line nuclei can be used in the distant future to constrain some characteristics of the nuclear energy density functional. Last but not least, large scale predictions of halos among all spherical even-even nuclei are performed using specific sets of particle-hole and particle-particle energy functionals. It is shown that halos in the ground state of medium-mass nuclei will only be found at the very limit of neutron stability and for a limited number of elements.Comment: 24 Pages, 32 Figures. Accepted for publication in Phys. Rev. C back-to back with first part (nucl-th/0702050

    Mechanical Flip-Chip for Ultra-High Electron Mobility Devices

    Full text link
    Electrostatic gates are of paramount importance for the physics of devices based on high-mobility two-dimensional electron gas (2DEG) since they allow depletion of electrons in selected areas. This field-effect gating enables the fabrication of a wide range of devices such as, for example, quantum point contacts (QPC), electron interferometers and quantum dots. To fabricate these gates, processing is usually performed on the 2DEG material, which is in many cases detrimental to its electron mobility. Here we propose an alternative process which does not require any processing of the 2DEG material other than for the ohmic contacts. This approach relies on processing a separate wafer that is then mechanically mounted on the 2DEG material in a flip-chip fashion. This technique proved successful to fabricate quantum point contacts on both GaAs/AlGaAs materials with both moderate and ultra-high electron mobility.Comment: 5 pages, 3 figure

    Carrier drift velocity and edge magnetoplasmons in graphene

    Get PDF
    We investigate electron dynamics at the graphene edge by studying the propagation of collective edge magnetoplasmon (EMP) excitations. By timing the travel of narrow wave-packets on picosecond time scales around exfoliated samples, we find chiral propagation with low attenuation at a velocity which is quantized on Hall plateaus. We extract the carrier drift contribution from the EMP propagation and find it to be slightly less than the Fermi velocity, as expected for an abrupt edge. We also extract the characteristic length for Coulomb interaction at the edge and find it to be smaller than for soft, depletion edge systems.Comment: 5 pages, 3 figures of main text and 6 pages, 6 figures of supplemental materia
    corecore