9 research outputs found

    Experimental Analysis of the Influence of Structural Parameters on the Behavior of Glass-Fiber Reinforced Polypropylene Composites

    Get PDF
    In a composite material reinforced by short random fibers, damage results from different elementary failure mechanisms such as matrix micro-cracking, fiber pull out, failure of fiber/matrix interface, failure of fibers, etc. These damages have a large influence on the macroscopic behavior of composite materials. To obtain a good mechanical performance of a composite material, it is important to optimize the fiber ratio and the quality of the fiber/matrix interface, which have a direct influence on the damage mentioned above. The main objective of this study is to determine the influence of structural parameters on the evolution of damage for two types of polypropylene glass-fiber reinforced composites. In parallel with a classical approach of the mechanical theory of damage, which consists in load-unload tensile tests, the use of acoustic emission allows one to follow in real time the character and the importance of damage mechanisms in the course of loading. In addition, fractographic analysis makes it possible to confirm different assumptions and conclusions from this study.Π’ ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚Π½ΠΎΠΌ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π΅, Π°Ρ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠΌ случайно располоТСнными ΠΊΠΎΡ€ΠΎΡ‚ΠΊΠΈΠΌΠΈ Π²ΠΎΠ»ΠΎΠΊΠ½Π°ΠΌΠΈ, поврСТдСния ΠΏΡ€ΠΈ мСханичСском Π½Π°Π³Ρ€ΡƒΠΆΠ΅Π½ΠΈΠΈ Π²ΠΎΠ·Π½ΠΈΠΊΠ°ΡŽΡ‚ Π² Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ дСйствия Ρ€Π°Π·Π½Ρ‹Ρ… элСмСнтарных ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠΎΠ², Ρ‚Π°ΠΊΠΈΡ… ΠΊΠ°ΠΊ микрорастрСскиваниС ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Ρ‹, Π²Ρ‹Π΄Π΅Ρ€Π³ΠΈΠ²Π°Π½ΠΈΠ΅ Π²ΠΎΠ»ΠΎΠΊΠΎΠ½, Ρ€Π°Π·Ρ€ΡƒΡˆΠ΅Π½ΠΈΠ΅ ΠΌΠ΅ΠΆΡ„Π°Π·Π½ΠΎΠΉ Π³Ρ€Π°Π½ΠΈΡ†Ρ‹ Π²ΠΎΠ»ΠΎΠΊΠ½ΠΎ-ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Π°, Ρ€Π°Π·Ρ€ΡƒΡˆΠ΅Π½ΠΈΠ΅ Π²ΠΎΠ»ΠΎΠΊΠΎΠ½. Π­Ρ‚ΠΈ поврСТдСния ΠΎΠΊΠ°Π·Ρ‹Π²Π°ΡŽΡ‚ большоС влияниС Π½Π° макроскопичСскиС свойства ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚Π½ΠΎΠ³ΠΎ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π°. Для получСния ΠΏΡ€ΠΈΠ΅ΠΌΠ»Π΅ΠΌΡ‹Ρ… мСханичСских характСристик ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚Π½ΠΎΠ³ΠΎ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π° Π²Π°ΠΆΠ½ΠΎ ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΡŽ Π²ΠΎΠ»ΠΎΠΊΠΎΠ½, Π° Ρ‚Π°ΠΊΠΆΠ΅ качСство ΠΌΠ΅ΠΆΡ„Π°Π·Π½ΠΎΠΉ Π³Ρ€Π°Π½ΠΈΡ†Ρ‹ Π²ΠΎΠ»ΠΎΠΊΠ½ΠΎ- ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Π°, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΎΠΊΠ°Π·Ρ‹Π²Π°ΡŽΡ‚ нСпосрСдствСнноС влияниС Π½Π° пСрСчислСнныС Π²Ρ‹ΡˆΠ΅ поврСТдСния. Π“Π»Π°Π²Π½ΠΎΠΉ Ρ†Π΅Π»ΡŒΡŽ ΡΡ‚Π°Ρ‚ΡŒΠΈ являСтся ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ влияния структурных ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² Π½Π° ΡΠ²ΠΎΠ»ΡŽΡ†ΠΈΡŽ поврСТдаСмости Π΄Π²ΡƒΡ… Ρ‚ΠΈΠΏΠΎΠ² стСклопластиков Π½Π° основС ΠΏΠΎΠ»ΠΈΠΏΡ€ΠΎΠΏΠΈΠ»Π΅Π½Π°. ΠžΠ΄Π½ΠΎΠ²Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎ с классичСским ΠΏΠΎΠ΄Ρ…ΠΎΠ΄ΠΎΠΌ ΠΊ мСханичСской Ρ‚Π΅ΠΎΡ€ΠΈΠΈ поврСТдаСмости, основанной Π½Π° испытаниях Π½Π° растяТСниС с пСриодичСской Ρ€Π°Π·Π³Ρ€ΡƒΠ·ΠΊΠΎΠΉ, использованиС ΠΌΠ΅Ρ‚ΠΎΠ΄Π° акустичСской эмиссии Π΄Π°Π΅Ρ‚ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΈΠ·ΡƒΡ‡Π°Ρ‚ΡŒ Π² Ρ€Π΅Π°Π»ΡŒΠ½ΠΎΠΌ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ ΠΏΡ€ΠΈΡ€ΠΎΠ΄Ρƒ ΠΈ Π²Π°ΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠΎΠ² ΠΏΠΎΠ²Ρ€Π΅ΠΆΠ΄Π΅Π½ΠΈΠΉ Π² процСссС нагруТСния. Π’ Π΄ΠΎΠΏΠΎΠ»Π½Π΅Π½ΠΈΠ΅ ΠΊ этому фрактографичСский Π°Π½Π°Π»ΠΈΠ· позволяСт ΠΏΠΎΠ΄Ρ‚Π²Π΅Ρ€Π΄ΠΈΡ‚ΡŒ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Π΅ прСдпосылки ΠΈ Π·Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΡ настоящСго исслСдования.Π£ ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚Π½ΠΎΠΌΡƒ ΠΌΠ°Ρ‚Π΅Ρ€Ρ–Π°Π»Ρ–, Ρ‰ΠΎ Π°Ρ€ΠΌΠΎΠ²Π°Π½ΠΈΠΉ Π²ΠΈΠΏΠ°Π΄ΠΊΠΎΠ²ΠΎ Ρ€ΠΎΠ·Ρ‚Π°ΡˆΠΎΠ²Π°Π½ΠΈΠΌΠΈ ΠΊΠΎΡ€ΠΎΡ‚ΠΊΠΈΠΌΠΈ Π²ΠΎΠ»ΠΎΠΊΠ½Π°ΠΌΠΈ, пошкодТСння ΠΏΡ€ΠΈ ΠΌΠ΅Ρ…Π°Π½Ρ–Ρ‡Π½ΠΎΠΌΡƒ Π½Π°Π²Π°Π½Ρ‚Π°ΠΆΠ΅Π½Π½Ρ– Π²ΠΈΠ½ΠΈΠΊΠ°ΡŽΡ‚ΡŒ внаслідок Π΄Ρ–Ρ— Ρ€Ρ–Π·Π½ΠΈΡ… Π΅Π»Π΅ΠΌΠ΅Π½Ρ‚Π°Ρ€Π½ΠΈΡ… ΠΌΠ΅Ρ…Π°Π½Ρ–Π·ΠΌΡ–Π², Ρ‚Π°ΠΊΠΈΡ… як мікророзтріскування ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Ρ–, висмикування Π²ΠΎΠ»ΠΎΠΊΠΎΠ½, руйнування ΠΌΡ–ΠΆΡ„Π°Π·ΠΎΠ²ΠΎΡ— Π³Ρ€Π°Π½ΠΈΡ†Ρ– Π²ΠΎΠ»ΠΎΠΊΠ½ΠΎ- матриця, руйнування Π²ΠΎΠ»ΠΎΠΊΠΎΠ½. Π¦Ρ– пошкодТСння Π·ΡƒΠΌΠΎΠ²Π»ΡŽΡŽΡ‚ΡŒ Π·Π½Π°Ρ‡Π½ΠΈΠΉ Π²ΠΏΠ»ΠΈΠ² Π½Π° макроскопічні властивості ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚Π½ΠΎΠ³ΠΎ ΠΌΠ°Ρ‚Π΅Ρ€Ρ–Π°Π»Ρƒ. Π©ΠΎΠ± ΠΎΡ‚Ρ€ΠΈΠΌΠ°Ρ‚ΠΈ прийнятні ΠΌΠ΅Ρ…Π°Π½Ρ–Ρ‡Π½Ρ– характСристики ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚Π½ΠΎΠ³ΠΎ ΠΌΠ°Ρ‚Π΅Ρ€Ρ–Π°Π»Ρƒ, Π²Π°ΠΆΠ»ΠΈΠ²ΠΎ ΠΎΠΏΡ‚ΠΈΠΌΡ–- Π·ΡƒΠ²Π°Ρ‚ΠΈ ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†Ρ–ΡŽ Π²ΠΎΠ»ΠΎΠΊΠΎΠ½, Π° Ρ‚Π°ΠΊΠΎΠΆ ΡΠΊΡ–ΡΡ‚ΡŒ ΠΌΡ–ΠΆΡ„Π°Π·ΠΎΠ²ΠΎΡ— Π³Ρ€Π°Π½ΠΈΡ†Ρ– Π²ΠΎΠ»ΠΎΠΊΠ½ΠΎ- матриця, які Π±Π΅Π·ΠΏΠΎΡΠ΅Ρ€Π΅Π΄Π½ΡŒΠΎ Π²ΠΏΠ»ΠΈΠ²Π°ΡŽΡ‚ΡŒ Π½Π° Ρ†Ρ– пошкодТСння. Π“ΠΎΠ»ΠΎΠ²Π½Π° ΠΌΠ΅Ρ‚Π° Ρ€ΠΎΠ±ΠΎΡ‚ΠΈ - визначСння Π²ΠΏΠ»ΠΈΠ²Ρƒ структурних ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ–Π² Π½Π° Π΅Π²ΠΎΠ»ΡŽΡ†Ρ–ΡŽ пошкодТСння Π΄Π²ΠΎΡ… Ρ‚ΠΈΠΏΡ–Π² склопластиків Π½Π° основі ΠΏΠΎΠ»Ρ–ΠΏΡ€ΠΎΠΏΡ–Π»Π΅Π½Ρƒ. ΠžΠ΄Π½ΠΎΡ‡Π°ΡΠ½ΠΎ Π· класичним ΠΏΡ–Π΄Ρ…ΠΎΠ΄ΠΎΠΌ Π΄ΠΎ ΠΌΠ΅Ρ…Π°Π½Ρ–Ρ‡Π½ΠΎΡ— Ρ‚Π΅ΠΎΡ€Ρ–Ρ— пошкодТСння, Ρ‰ΠΎ заснована Π½Π° випробуваннях Π½Π° розтяг Ρ–Π· ΠΏΠ΅Ρ€Ρ–ΠΎΠ΄ΠΈΡ‡Π½ΠΈΠΌ розвантаТСнням, використання ΠΌΠ΅Ρ‚ΠΎΠ΄Ρƒ акустичної Смісії Π΄Π°Ρ” Π·ΠΌΠΎΠ³Ρƒ Π²ΠΈΠ²Ρ‡Π°Ρ‚ΠΈ Π² Ρ€Π΅Π°Π»ΡŒΠ½ΠΎΠΌΡƒ часі ΠΏΡ€ΠΈΡ€ΠΎΠ΄Ρƒ Ρ– Π²Π°ΠΆΠ»ΠΈΠ²Ρ–ΡΡ‚ΡŒ ΠΌΠ΅Ρ…Π°Π½Ρ–Π·ΠΌΡ–Π² пошкодТСнь Ρƒ процСсі навантаТСння. Π”ΠΎΠ΄Π°Ρ‚ΠΊΠΎΠ²ΠΎ Π΄ΠΎ Ρ†ΡŒΠΎΠ³ΠΎ Ρ„Ρ€Π°ΠΊΡ‚ΠΎΠ³Ρ€Π°Ρ„Ρ–Ρ‡Π½ΠΈΠΉ Π°Π½Π°Π»Ρ–Π· дозволяє ΠΏΡ–Π΄Ρ‚Π²Π΅Ρ€Π΄ΠΈΡ‚ΠΈ Ρ€Ρ–Π·Π½Ρ– ΠΏΠ΅Ρ€Π΅Π΄ΡƒΠΌΠΎΠ²ΠΈ Ρ– висновки Π΄Π°Π½ΠΎΠ³ΠΎ дослідТСння

    Fracture Process in Β± ΞΈ Laminates Subjected to Mode II Loading

    Get PDF
    This work studies the behavior of a multidirectional laminate under Mode II loading. We describe the process of delamination in a reinforced composite of glass/epoxy. The stacking sequence (plies orientation [Β±ΞΈ]) was selected to minimize the coupling effects. The Mode II interlaminar test under three-point bending and cantilever flexure using ENF (End Notch Flexure) and ELS (End Load Split) specimens, respectively, was performed and analyzed. The test procedures and the results of strain-energy-release rate study for crack initiation are presented. The fracture process and the mechanical behavior of the two types of specimens are analyzed. The analysis clearly shows a close link between the angle ΞΈ, the ratio a/L, and the thickness h of the specimen. Fracture by delamination can be obtained only with an optimal choice of these parameters. The analysis of the states of stresses at the tip of crack allows us to explain the phenomenon of bifurcation between plies and is confirmed by the experimental results.Π˜ΡΡΠ»Π΅Π΄ΡƒΠ΅Ρ‚ΡΡ ΠΏΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠ΅ ΠΌΠ½ΠΎΠ³ΠΎΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ Π»Π°ΠΌΠΈΠ½Π°Ρ‚Π° ΠΏΡ€ΠΈ Π΅Π³ΠΎ Π½Π°Π³Ρ€ΡƒΠΆΠ΅Π½ΠΈΠΈ ΠΏΠΎ Ρ‚ΠΈΠΏΡƒ KII . Описан процСсс дСламинирования ΡƒΠΏΡ€ΠΎΡ‡Π½Π΅Π½Π½ΠΎΠ³ΠΎ стСклоэпоксидного ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚Π°. Для ΠΌΠΈΠ½ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΠΈ эффСктов трСния Π²Ρ‹Π±Ρ€Π°Π½Π° ориСнтация Β± ΞΈ. РассмотрСна ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ° ΠΌΠ΅ΠΆΠ»Π°ΠΌΠΈΠ½Π°Ρ€Π½Ρ‹Ρ… испытаний ΠΏΠΎ Ρ‚ΠΈΠΏΡƒ KII с использованиСм схСм Ρ‚Ρ€Π΅Ρ…Ρ‚ΠΎΡ‡Π΅Ρ‡Π½ΠΎΠ³ΠΎ ΠΈ консольного ΠΈΠ·Π³ΠΈΠ±Π° соотвСтствСнно ΠΎΠ±Ρ€Π°Π·Ρ†ΠΎΠ² Ρ‚ΠΈΠΏΠ° ENF (Ρ‚ΠΎΡ€Ρ†Π΅Π²ΠΎΠ΅ Π·Π°Ρ‰Π΅ΠΌΠ»Π΅Π½ΠΈΠ΅ с ΠΊΠΎΠ½ΡΠΎΠ»ΡŒΠ½Ρ‹ΠΌ ΠΈΠ·Π³ΠΈΠ±ΠΎΠΌ Π½Π°Π³Ρ€ΡƒΠ·ΠΊΠΎΠΉ, Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎ распрСдСлСнной ΠΏΠΎ ΡˆΠΈΡ€ΠΈΠ½Π΅ свободного Ρ‚ΠΎΡ€Ρ†Π°) ΠΈ ELS (ΡˆΠ°Ρ€Π½ΠΈΡ€Π½ΠΎ закрСплСнная Π±Π°Π»ΠΊΠ° с Ρ†Π΅Π½Ρ‚Ρ€Π°Π»ΡŒΠ½ΠΎΠΉ Π½Π°Π³Ρ€ΡƒΠ·ΠΊΠΎΠΉ, Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎ распрСдСлСнной ΠΏΠΎ ΡˆΠΈΡ€ΠΈΠ½Π΅ Π±Π°Π»ΠΊΠΈ). ΠŸΡ€Π΅Π΄ΡΡ‚Π°Π²Π»Π΅Π½Ρ‹ ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹Π΅ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠΈ ΠΈ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ исслСдования скоростСй высвобоТдСния энСргии Π΄Π΅Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΈ ΠΏΡ€ΠΈ ΠΈΠ½ΠΈΡ†ΠΈΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠΈ Ρ‚Ρ€Π΅Ρ‰ΠΈΠ½. Для Π΄Π²ΡƒΡ… Π²Ρ‹ΡˆΠ΅ΡƒΠΊΠ°Π·Π°Π½Π½Ρ‹Ρ… Ρ‚ΠΈΠΏΠΎΠ² ΠΎΠ±Ρ€Π°Π·Ρ†ΠΎΠ² ΠΏΡ€ΠΎΠ°Π½Π°Π»ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½ процСсс Ρ€Π°Π·Ρ€ΡƒΡˆΠ΅Π½ΠΈΡ ΠΈ мСханичСского повСдСния ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π°. УстановлСна тСсная коррСляционная связь ΠΌΠ΅ΠΆΠ΄Ρƒ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π°ΠΌΠΈ ΡƒΠ³Π»Π° ΞΈ, ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ΠΌ a/L ΠΈ Ρ‚ΠΎΠ»Ρ‰ΠΈΠ½ΠΎΠΉ ΠΎΠ±Ρ€Π°Π·Ρ†ΠΎΠ² h. Показано, Ρ‡Ρ‚ΠΎ Ρ€Π°Π·Ρ€ΡƒΡˆΠ΅Π½ΠΈΠ΅ вслСдствиС Π΄Π΅Π»Π°ΠΌΠΈΠ½Π°Ρ†ΠΈΠΈ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ΠΏΡ€ΠΈ условии ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ Π²Ρ‹Π±ΠΎΡ€Π° этих ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ². Анализ напряТСнного состояния Π² Π²Π΅Ρ€ΡˆΠΈΠ½Π΅ Ρ‚Ρ€Π΅Ρ‰ΠΈΠ½Ρ‹ позволяСт ΠΎΠ±ΡŠΡΡΠ½ΠΈΡ‚ΡŒ явлСниС мСТслойной Π±ΠΈΡ„ΡƒΡ€ΠΊΠ°Ρ†ΠΈΠΈ, Π΅Π³ΠΎ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ Ρ…ΠΎΡ€ΠΎΡˆΠΎ ΡΠΎΠ³Π»Π°ΡΡƒΡŽΡ‚ΡΡ с ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹ΠΌΠΈ Π΄Π°Π½Π½Ρ‹ΠΌΠΈ.Π”ΠΎΡΠ»Ρ–Π΄ΠΆΡƒΡ”Ρ‚ΡŒΡΡ ΠΏΠΎΠ²Π΅Π΄Ρ–Π½ΠΊΠ° Π±Π°Π³Π°Ρ‚ΠΎΠ²ΠΈΠΌΡ–Ρ€Π½ΠΎΠ³ΠΎ Π»Π°ΠΌΡ–Π½Π°Ρ‚Π° ΠΏΡ€ΠΈ ΠΉΠΎΠ³ΠΎ Π½Π°Π²Π°Π½Ρ‚Π°ΠΆΠ΅Π½Π½Ρ– Π·Π° Ρ‚ΠΈΠΏΠΎΠΌ KII . Описано процСс дСламінування Π·ΠΌΡ–Ρ†Π½Π΅Π½ΠΎΠ³ΠΎ склоСпоксидного ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚Π°. Для ΠΌΡ–Π½Ρ–ΠΌΡ–Π·Π°Ρ†Ρ–Ρ— Π΅Ρ„Π΅ΠΊΡ‚Ρ–Π² тСртя Π²ΠΈΠ±Ρ€Π°Π½ΠΎ ΠΎΡ€Ρ–Ρ”Π½Ρ‚Π°Ρ†Ρ–ΡŽ Β± ΞΈ. Розглянуто ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΡƒ ΠΌΡ–ΠΆΠ»Π°ΠΌΡ–Π½Π°Ρ€Π½ΠΈΡ… Π²ΠΈΠΏΡ€ΠΎΠ±ΡƒΠ²Π°Π½ΡŒ Π·Π° Ρ‚ΠΈΠΏΠΎΠΌ KII Ρ–Π· використанням схСм Ρ‚Ρ€ΠΈΡ‚ΠΎΡ‡ΠΊΠΎΠ²ΠΎΠ³ΠΎ Ρ– консольного Π·Π³ΠΈΠ½Ρƒ Π²Ρ–Π΄ΠΏΠΎΠ²Ρ–Π΄Π½ΠΎ Π·Ρ€Π°Π·ΠΊΡ–Π² Ρ‚ΠΈΠΏΡƒ ENF (Ρ‚ΠΎΡ€Ρ†Π΅Π²Π΅ затиснСння Π· консольним Π·Π³ΠΈΠ½ΠΎΠΌ навантаТСнням, Ρ‰ΠΎ Ρ€Ρ–Π²Π½ΠΎΠΌΡ–Ρ€Π½ΠΎ Ρ€ΠΎΠ·ΠΏΠΎΠ΄Ρ–Π»Π΅Π½Π΅ ΠΏΠΎ ΡˆΠΈΡ€ΠΈΠ½Ρ– Π²Ρ–Π»ΡŒΠ½ΠΎΠ³ΠΎ торця) Ρ– ELS (ΡˆΠ°Ρ€Π½Ρ–Ρ€Π½ΠΎ Π·Π°ΠΊΡ€Ρ–ΠΏΠ»Π΅Π½Π° Π±Π°Π»ΠΊΠ° Π· Ρ†Π΅Π½Ρ‚Ρ€Π°Π»ΡŒΠ½ΠΈΠΌ навантаТСнням, Ρ‰ΠΎ Ρ€Ρ–Π²Π½ΠΎΠΌΡ–Ρ€Π½ΠΎ Ρ€ΠΎΠ·ΠΏΠΎΠ΄Ρ–Π»Π΅Π½Π΅ ΠΏΠΎ ΡˆΠΈΡ€ΠΈΠ½Ρ– Π±Π°Π»ΠΊΡ–). ΠŸΡ€Π΅Π΄ΡΡ‚Π°Π²Π»Π΅Π½ΠΎ Π΅ΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ– ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠΈ Ρ– Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΈ Ρ‰ΠΎΠ΄ΠΎ ΡˆΠ²ΠΈΠ΄ΠΊΠΎΡΡ‚Π΅ΠΉ Π·Π²Ρ–Π»ΡŒΠ½Π΅Π½Π½Ρ Π΅Π½Π΅Ρ€Π³Ρ–Ρ— Π΄Π΅Ρ„ΠΎΡ€ΠΌΠ°Ρ†Ρ–Ρ— ΠΏΡ€ΠΈ Ρ–Π½Ρ–Ρ†Ρ–ΡŽΠ²Π°Π½Π½Ρ– Ρ‚Ρ€Ρ–Ρ‰ΠΈΠ½. Для Π΄Π²ΠΎΡ… Π²ΠΈΡ‰Π΅Π²ΠΊΠ°Π·Π°Π½ΠΈΡ… Ρ‚ΠΈΠΏΡ–Π² Π·Ρ€Π°Π·ΠΊΡ–Π² ΠΏΡ€ΠΎΠ°Π½Π°Π»Ρ–Π·ΠΎΠ²Π°Π½ΠΎ процСс руйнування Ρ– ΠΌΠ΅Ρ…Π°Π½Ρ–Ρ‡Π½ΠΎΡ— ΠΏΡ€ΠΎΠ²Π΅Π΄Ρ–Π½ΠΊΠΈ ΠΌΠ°Ρ‚Π΅Ρ€Ρ–Π°Π»Ρƒ. УстановлСно корСляційний зв’язок ΠΌΡ–ΠΆ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π°ΠΌΠΈ ΠΊΡƒΡ‚Π° ΞΈ, Π²Ρ–Π΄Π½ΠΎΡˆΠ΅Π½Π½ΡΠΌ a /L Ρ– Ρ‚ΠΎΠ²Ρ‰ΠΈΠ½ΠΎΡŽ Π·Ρ€Π°Π·ΠΊΡ–Π² h. Показано, Ρ‰ΠΎ руйнування внаслідок Π΄Π΅Π»Π°ΠΌΡ–Π½Π°Ρ†Ρ–Ρ— ΠΌΠΎΠΆΠ»ΠΈΠ²Π΅ лишС Π·Π° ΡƒΠΌΠΎΠ²ΠΈ ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ Π²ΠΈΠ±ΠΎΡ€Ρƒ Ρ†ΠΈΡ… ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ–Π². Аналіз Π½Π°ΠΏΡ€ΡƒΠΆΠ΅Π½ΠΎΠ³ΠΎ стану Ρƒ вістрі Ρ‚Ρ€Ρ–Ρ‰ΠΈΠ½ΠΈ дозволяє пояснити явищС ΠΌΡ–ΠΆΡˆΠ°Ρ€ΠΎΠ²ΠΎΡ— Π±Ρ–Ρ„ΡƒΡ€ΠΊΠ°Ρ†Ρ–Ρ— Ρ– Π΄ΠΎΠ±Ρ€Π΅ ΡƒΠ·Π³ΠΎΠ΄ΠΆΡƒΡ”Ρ‚ΡŒΡΡ Ρ–Π· Π΅ΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½ΠΈΠΌΠΈ Π΄Π°Π½ΠΈΠΌΠΈ

    Ewing’s sarcoma of the mobile spine: Three unusual observations

    Get PDF
    Background. Ewing’s sarcoma is a bony highly malignant tumour, it occurs most frequently in the second decade of life. Ewing’s sarcoma is a rare affection, located usually in the pelvis, the femur, the humerus, the ribs, the mandible and clavicle, other location are rare especially in the spine. We report three cases of spinal Ewing’s sarcoma, two primary spine locations and one on young adult with unusual clinical presentation. Cases presentation Case 1. The first patient is a girl of 14 years old without past medical history. She presented initially two months before consultation a neck pain followed days after by a weakness of the left upper limb; the spine imaging performed objectified a destructive process of C2 with a spinal cord compression. The patient was operated beneficiating of a spinal cord decompression and a subtotal removal of the tumour. The pathologist’s results were in favour of Ewing’s sarcoma and the patient was oriented to oncology. Case 2. The second patient is a man of 31 years old operated five years before he consulted for shoulder Ewing’s sarcoma followed by chemotherapy and radiotherapy, he presented two months before consultation a cauda equina syndrome. Spine MRI objectified a double location of an epidural tumour at T3-T4 and S1-S2 levels. The patient was operated beneficiating of subtotal removal of the tumour. The laboratory exam results were in favour of Ewing’s sarcoma and the patient was oriented to oncology. Case 3. The third patient is a 6 years old boy who presented a 1 month history of low back pain followed by a rapidly deteriorating weakness of both lower limbs over a weak. On examination there was bilateral spastic paraplegia, hypoesthesia below the level of Th10 and a urinary retention. The MRI imaging revealed a lesion on the levels Th8, Th9 and Th10 vertebras involving the body, pedicle, lamina, and the transverse process on the left side with an epidural invasion compressing the spinal cord. The tumour was radically removed. Pathology report was in favour of Ewing’s sarcoma. Two weeks after surgery the patient was able to walk. He was referred for adjuvant systemic chemotherapy. Conclusion. Ewing’s sarcoma is rare malignant tumour. The location in the spine exposes the patient to more complications because of the neurostructures compression. The surgical total removal followed by radio and chemotherapy is the only option with the best prognostic and guaranties an acceptable life quality

    Interlaminar Fracture Toughness Evaluation in Glass/Epoxy Composites Using Acoustic Emission and Finite Element Methods

    Get PDF
    Β© 2014, ASM International. Delamination is one of the most common modes of failure in laminated composites and it leads to the loss of structural strength and stiffness. In this paper, mode I, mode II, and mixed of these pure modes were investigated using mechanical data, Finite Element Method (FEM) and Acoustic Emission (AE) signals. Experimental data were obtained from insitu monitoring of glass/epoxy laminated composites with different lay-ups when subjected to different modes of failure. The main objective was to investigate the behavior of delamination propagation and to evaluate the critical value of the strain energy which is required for onset of the delamination (GC). For the identification of interlaminar fracture toughness of the specimens, four methods were used: (a) ASTM standard methods, (b) FEM analysis, (c) AE method, and (d) sentry function method which is a function of mechanical and AE behaviors of the specimens. The results showed that the GC values obtained by the sentry function method and FEM analysis were in a close agreement with the results of nonlinearity methods which is recommended in the ASTM standards. It was also found that the specimens under different loading conditions and various lay-up have different GC values. These differences are related to different stress components distribution in the specimens which induce various damage mechanisms. Accordingly, stress components distribution obtained from FEM analyses were in agreement with SEM observations of the damaged surfaces of the specimens

    Mode II delamination in Β± laminates: Analysis and optimisation

    No full text
    International audienceThe literature concerning Β± laminates under mode II (propagation mode) loading encounters a difficulty in calculation of the structural dimensions. Indeed, it is rare to have a specimen geometry which fully satisfies the conditions for application of the Linear Elastic Fracture Mechanics (LEFM). Thus, the aim of this work is the optimisation of the specimen geometry which allows the characterisation of mode II by the approach of the LEFM concept. The results obtained show an interaction between the geometrical characteristics of the specimen (thickness h), the angle of orientation of the plies () and the characterisation of delamination. The experimental results are in good agreement with the analytical predictions. The use of the acoustic emission allows us to observe that delamination is only one final stage in a process of damage which starts well before
    corecore