34 research outputs found

    Calibration-Free Eye Gaze Direction Detection with Gaussian Processes

    Get PDF
    In this paper we present a solution for eye gaze detection from a wireless head mounted camera designed for children aged between 6 months and 18 months. Due to the constraints of working with very young children, the system does not seek to be as accurate as other state-of-the-art eye trackers, however it requires no calibration process from the wearer. Gaussian Process Regression and Support Vector Machines are used to analyse the raw pixel data from the video input and return an estimate of the child's gaze direction. A confidence map is used to determine the accuracy the system can expect for each coordinate on the image. The best accuracy so far obtained by the system is 2.34circ^{circ} on adult subjects, tests with children remain to be done

    Heterotic String Compactifications on Half-flat Manifolds II

    Full text link
    In this paper, we continue the analysis of heterotic string compactifications on half-flat mirror manifolds by including the 10-dimensional gauge fields. It is argued, that the heterotic Bianchi identity is solved by a variant of the standard embedding. Then, the resulting gauge group in four dimensions is still E6 despite the fact that the Levi-Civita connection has SO(6) holonomy. We derive the associated four-dimensional effective theories including matter field terms for such compactifications. The results are also extended to more general manifolds with SU(3) structure.Comment: 31 page

    Moduli Stabilisation in Heterotic Models with Standard Embedding

    Full text link
    In this note we analyse the issue of moduli stabilisation in 4d models obtained from heterotic string compactifications on manifolds with SU(3) structure with standard embedding. In order to deal with tractable models we first integrate out the massive fields. We argue that one can not only integrate out the moduli fields, but along the way one has to truncate also the corresponding matter fields. We show that the effective models obtained in this way do not have satisfactory solutions. We also look for stabilised vacua which take into account the presence of the matter fields. We argue that this also fails due to a no-go theorem for Minkowski vacua in the moduli sector which we prove in the end. The main ingredient for this no-go theorem is the constraint on the fluxes which comes from the Bianchi identity.Comment: 20 pages, LaTeX; references adde

    Heterotic compactifications on SU(2)-structure backgrounds

    Full text link
    In this paper we study the reduction of heterotic string theory on SU(2)-structure backgrounds. We compute the bosonic low-energy gauged N=2 supergravity specified by the Killing vectors corresponding to the gauged isometries. We check that the obtained Lagrangian is consistent with the one of N=2 local supersymmetry. We also determine the Killing prepotentials.Comment: reference added, corrected typos and some factor

    U-dual fluxes and Generalized Geometry

    Get PDF
    We perform a systematic analysis of generic string flux compactifications, making use of Exceptional Generalized Geometry (EGG) as an organizing principle. In particular, we establish the precise map between fluxes, gaugings of maximal 4d supergravity and EGG, identifying the complete set of gaugings that admit an uplift to 10d heterotic or type IIB supegravity backgrounds. Our results reveal a rich structure, involving new deformations of 10d supergravity backgrounds, such as the RR counterparts of the β\beta-deformation. These new deformations are expected to provide the natural extension of the β\beta-deformation to full-fledged F-theory backgrounds. Our analysis also provides some clues on the 10d origin of some of the particularly less understood gaugings of 4d supergravity. Finally, we derive the explicit expression for the effective superpotential in arbitrary N = 1 heterotic or type IIB orientifold compactifications, for all the allowed fluxes.Comment: 58 pages, 6 table

    Hypermoduli Stabilization, Flux Attractors, and Generating Functions

    Get PDF
    We study stabilization of hypermoduli with emphasis on the effects of generalized fluxes. We find a class of no-scale vacua described by ISD conditions even in the presence of geometric flux. The associated flux attractor equations can be integrated by a generating function with the property that the hypermoduli are determined by a simple extremization principle. We work out several orbifold examples where all vector moduli and many hypermoduli are stabilized, with VEVs given explicitly in terms of fluxes.Comment: 45 pages, no figures; Version submitted to JHE

    Five-Brane Superpotentials, Blow-Up Geometries and SU(3) Structure Manifolds

    Full text link
    We investigate the dynamics of space-time filling five-branes wrapped on curves in heterotic and orientifold Calabi-Yau compactifications. We first study the leading N=1 scalar potential on the infinite deformation space of the brane-curve around a supersymmetric configuration. The higher order potential is also determined by a brane superpotential which we compute for a subset of light deformations. We argue that these deformations map to new complex structure deformations of a non-Calabi-Yau manifold which is obtained by blowing up the brane-curve into a four-cycle and by replacing the brane by background fluxes. This translates the original brane-bulk system into a unifying geometrical formulation. Using this blow-up geometry we compute the complete set of open-closed Picard-Fuchs differential equations and identify the brane superpotential at special points in the field space for five-branes in toric Calabi-Yau hypersurfaces. This has an interpretation in open mirror symmetry and enables us to list compact disk instanton invariants. As a first step towards promoting the blow-up geometry to a supersymmetric heterotic background we propose a non-Kaehler SU(3) structure and an identification of the three-form flux.Comment: 95 pages, 4 figures; v2: Minor corrections, references update

    D6-branes and torsion

    Full text link
    The D6-brane spectrum of type IIA vacua based on twisted tori and RR background fluxes is analyzed. In particular, we compute the torsion factors of the (co)homology groups H_n and describe the effect that they have on D6-brane physics. For instance, the fact that H_3 contains Z_N subgroups explains why RR tadpole conditions are affected by geometric fluxes. In addition, the presence of torsional (co)homology shows why some D6-brane moduli are lifted, and it suggests how the D-brane discretum appears in type IIA flux compactifications. Finally, we give a clear, geometrical understanding of the Freed-Witten anomaly in the present type IIA setup, and discuss its consequences for the construction of semi-realistic flux vacua.Comment: 35 pages, 1 figure. One reference adde

    G-structures and Domain Walls in Heterotic Theories

    Full text link
    We consider heterotic string solutions based on a warped product of a four-dimensional domain wall and a six-dimensional internal manifold, preserving two supercharges. The constraints on the internal manifolds with SU(3) structure are derived. They are found to be generalized half-flat manifolds with a particular pattern of torsion classes and they include half-flat manifolds and Strominger's complex non-Kahler manifolds as special cases. We also verify that previous heterotic compactifications on half-flat mirror manifolds are based on this class of solutions.Comment: 29 pages, reference added, typos correcte

    DWSB in heterotic flux compactifications

    Get PDF
    We address the construction of non-supersymmetric vacua in heterotic compactifications with intrinsic torsion and background fluxes. In particular, we implement the approach of domain-wall supersymmetry breaking (DWSB) previously developed in the context of type II flux compactifications. This approach is based on considering backgrounds where probe NS5-branes wrapping internal three-cycles and showing up as four-dimensional domain-walls do not develop a BPS bound, while all the other BPS bounds characterizing the N=1 supersymmetric compactifications are preserved at tree-level. Via a scalar potential analysis we provide the conditions for these backgrounds to solve the ten-dimensional equations of motion including order \alpha' corrections. We also consider backgrounds where some of the NS5-domain-walls develop a BPS bound, show their relation to no-scale SUSY-breaking vacua and construct explicit examples via elliptic fibrations. Finally, we consider backgrounds with a non-trivial gaugino condensate and discuss their relation to supersymmetric and non-supersymmetric vacua in the present context.Comment: 56 pages, 1 figur
    corecore