1,041 research outputs found

    Reduction of Some N-substituted Aminoacetonitrileswith Lithium Aluminium Hydride

    Get PDF
    Reduction of some N-substitute d (aryl-, benzyl- and cyclohexyl-) aminocetonitriles with lithium aluminium hydride gave besides the expected. N-substitute ethylenediamines also the corresponding substituted N-methylamines in varying yields

    Trap-Assisted Tunneling in the Schottky Barrier

    Get PDF
    The paper presents a new way how to calculate the currents in a Schottky barrier. The novel phenomeno-logical model extends the Shockley-Read-Hall recombi-nation-generation theory of trap-assisted tunneling. The proposed approach explains the occurrence of large leakage currents in Schottky structures on wide band semi-conductors with a high Schottky barrier (above 1 eV) and with a high density of traps. Under certain conditions, trap-assisted tunneling (TAT) plays a more important role than direct tunneling

    Properties of the inner penumbral boundary and temporal evolution of a decaying sunspot

    Full text link
    It was empirically determined that the umbra-penumbra boundaries of stable sunspots are characterized by a constant value of the vertical magnetic field. We analyzed the evolution of the photospheric magnetic field properties of a decaying sunspot belonging to NOAA 11277 between August 28 - September 3, 2011. The observations were acquired with the spectropolarimeter on-board of the Hinode satellite. We aim to proof the validity of the constant vertical magnetic-field boundary between the umbra and penumbra in decaying sunspots. A spectral-line inversion technique was used to infer the magnetic field vector from the full-Stokes profiles. In total, eight maps were inverted and the variation of the magnetic properties in time were quantified using linear or quadratic fits. We found a linear decay of the umbral vertical magnetic field, magnetic flux, and area. The penumbra showed a linear increase of the vertical magnetic field and a sharp decay of the magnetic flux. In addition, the penumbral area quadratically decayed. The vertical component of the magnetic field is weaker on the umbra-penumbra boundary of the studied decaying sunspot compared to stable sunspots. Its value seem to be steadily decreasing during the decay phase. Moreover, at any time of the shown sunspot decay, the inner penumbra boundary does not match with a constant value of the vertical magnetic field, contrary to what was seen in stable sunspots. During the decaying phase of the studied sunspot, the umbra does not have a sufficiently strong vertical component of the magnetic field and is thus unstable and prone to be disintegrated by convection or magnetic diffusion. No constant value of the vertical magnetic field was found for the inner penumbral boundary.Comment: Accepted for publication in Astronomy & Astrophysics, 6 pages, 7 figure

    Plant immunity and beyond: Signals from proteins & peptides

    Get PDF
    Plants are the primary and most important source of food for human consumption, besides their ecological importance, since they define the diverse ecosystems worldwide. Because of their position in the ecological chain as primary supplier of biomass and food for other organisms, plants are also fundamental for animals, fungi and microorganisms, and some of them are also beneficial to other plants. Humans rely mostly on plant products for food, and many plants provide important non-food products, including wood, textiles, medicines, cosmetics, soaps, rubber, plastics, paints and other industrial chemicals. Moreover, plants are also fundamental for animal feeding, including not only mammals (e.g. cattle, sheep and goats), but also poultry and aquaculture (e.g., fish and shrimp farming)

    Phase-matched extreme-ultraviolet frequency-comb generation

    Full text link
    Laser-driven high-order harmonic generation (HHG) provides tabletop sources of broadband extreme-ultraviolet (XUV) light with excellent spatial and temporal coherence. These sources are typically operated at low repetition rates, frepf_{rep}\lesssim100 kHz, where phase-matched frequency conversion into the XUV is readily achieved. However, there are many applications that demand the improved counting statistics or frequency-comb precision afforded by operation at high repetition rates, frepf_{rep} > 10 MHz. Unfortunately, at such high frepf_{rep}, phase matching is prevented by the accumulated steady-state plasma in the generation volume, setting stringent limitations on the XUV average power. Here, we use gas mixtures at high temperatures as the generation medium to increase the translational velocity of the gas, thereby reducing the steady-state plasma in the laser focus. This allows phase-matched XUV emission inside a femtosecond enhancement cavity at a repetition rate of 77 MHz, enabling a record generated power of \sim2 mW in a single harmonic order. This power scaling opens up many demanding applications, including XUV frequency-comb spectroscopy of few-electron atoms and ions for precision tests of fundamental physical laws and constants.Comment: 9 pages, 4 figure

    Study of the Blazhko type RRc stars in the Stripe 82 region using SDSS and ZTF

    Full text link
    RR Lyrae stars are pulsating stars, many of which also show a long-term variation called the Blazhko effect which is a modulation of amplitude and phase of the lightcurve. In this work, we searched for the incidence rate of the Blazhko effect in the first-overtone pulsating RR Lyrae (RRc) stars of the Galactic halo. The focus was on the Stripe 82 region in the Galactic halo which was studied by Sesar et al using the Sloan Digital Sky Survey (SDSS) data. In their work, 104 RR Lyrae stars were classified as RRc type. We combined their SDSS light curves with Zwicky Transient Facility (ZTF) data, and use them to document the Blazhko properties of these RRc stars. Our analysis showed that among the 104 RRc stars, 8 were rather RRd stars, and were excluded from the study. Out of remaining 96, 34 were Blazhko type, 62 were non-Blazhko type, giving the incidence rate of 35.42% for Blazhko RRc stars. The shortest Blazhko period found was 12.808 +/- 0.001 d for SDSS 747380, while the longest was 3100 +/- 126 d for SDSS 3585856. Combining SDSS and ZTF data sets increased the probability of detecting the small variations due to the Blazhko effect, and thus provided a unique opportunity to find longer Blazhko periods. We found that 85% of RRc stars had the Blazhko period longer than 200 d.Comment: 9 pages, 2 tables, 8 figures, AJ accepte

    Sixty GHz IMPATT diode development

    Get PDF
    The objective of this program is to develop 60 GHz GaAs IMPATT Diodes suitable for communications applications. The performance goal of the 60 GHz IMPATT is 1W CW output power with a conversion efficiency of 15 percent and 10 year life time. During the course of the program, double drift (DD) GaAs IMPATT Diodes have been developed resulting in the state of the art performance at V band frequencies. A CW output power of 1.12 W was demonstrated at 51.9 GHz with 9.7 percent efficiency. The best conversion efficiency achieved was 15.3 percent. V band DD GaAs IMPATTs were developed using both small signal and large signal analyses. GaAs wafers of DD flat, DD hybrid, and DD Read profiles using molecular beam epitaxy (MBE) were developed with excellent doping profile control. Wafer evaluation was routinely made by the capacitance versus voltage (C-V) measurement. Ion mass spectrometry (SIMS) analysis was also used for more detailed profile evaluation

    GENOSOJA - The Brazilian Soybean Genome Consortium: high throughput omics and beyond.

    Get PDF
    Plant genomes are among the most complex and large ones of our planet, with high levels of redundancy when compared to other eukaryotic groups, leading to intricate processes for gene regulation and evolution. Such a complexity demands interdisciplinary and multidimensional approaches in order to allow a better understanding of the processes able to exploit the whole potential of the existing genes in different species, including crop plants. Among cultivated plants, soybean [Glycine max (L.) Merr.] occupies an outstanding position due to its importance as source of protein and oil that may also be converted into biodiesel. The seeds are rarely consumed in natura, but many traditional food products have been consumed, as soymilk, and tofu, as well as fermented products as soy sauce, and soy paste among others, besides its wide use for animal feed. Soybean cultivation has been highly concentrated geographically, with only four countries (USA, Brazil, Argentina and China) accounting for almost 90% of world output. Asia (excluding China) and Africa, the two regions where most of the food insecure countries are located, account for only 5% of production. Among countries classified as 'undernourished', only India and Bolivia are significant producers of soybeans (FAO, 2009). Available evidences indicate that the cultivated soybean was domesticated from its wild relative Glycine soja (Sieb. and Zucc.) in China about 5,000 years ago (Carter et al., 2004). Since then, soybean has been grown primarily in temperate regions for thousands of years, first in Northern Asia and in more recent years in North America and countries of the Southern Cone of Latin America (FAO, 2009). The remarkable success of this crop in temperate zones is well known, but the crop presents also an important role in cropping systems of the tropics and subtropics, also in low fertile regions, as the Brazilian cerrado savannah (Spehar, 1995). The actual area cultivated worldwide with soybean is estimated to cover 103.5 millions of hectares, from which 24.2 only in Brazil, with considerable increases in the production achieved without significant increase in the cultivated area (Embrapa Soybean, 2011). As a legume, soybean is able to develop symbiotic interactions with rhizobia, allowing the fixation and assimilation of atmospheric N2, bearing quite specific mechanisms to coordinate this complex interaction (Oldroyd and Downie, 2008), absent in most angiosperm groups. Besides this peculiarity, soybean presents 2n = 40 chromosomes and was early characterized as an ancient polyploid (paleopolyploid) through genetic mapping studies that identified homeologous chromosome regions based upon duplicate RFLP markers (Shoemaker et al., 1996; Lee et al., 1999; 2001). Due to its allopolyploid nature, the first approaches regarded the generation of expressed sequences from different library tissues and conditions, including mainly ESTs (Expressed Sequence Tags; Nelson et al., 2005) partially in annotated databases, including ca. 40.000 full length cDNA clones available (Umezawa et al., 2008, see also RIKEN Soybean Full-Length cDNA Database), besides analyses regarding RNAseq under different tissues and development stages, as well as under different stressing situations (e.g. Libault et al., 2010; Severin et al., 2010). Also a complete shotgun genome sequence of the soybean cultivar Williams 82 was released, comprising 1.1-gigabase genome size allowing the integration of physical and high-density genetic maps, including 46,430 predicted protein-coding genes (Schmutz et al., 2010). The total amount of data publicly available at GenBank (NCBI) includes more than 120,000 nucleotide sequences (mainly mRNA), ~1,460,000 ESTs, ~368,000 genome sequences, ~80,000 proteins, 118 deposited structures and more than 6,2 million SNPs. Such numbers show that working with soybean is a very challenging task. By the other hand, despite of the wide data availability, most data regard cultivars from temperate regions (as Williams 82), not adapted for cultivation under tropical conditions, as it is the case of central Brazil and many other tropical countries that are subjected to distinct environmental stresses. The proposition of creating the GENOSOJA consortium was submitted in 2007 to the National Council for Scientific and Technological Development (CNPq), an agency linked to the Brazilian Ministry of Science and Technology (MCT), starting its activity in March 2008 with the participation of nine Brazilian institutions from different regions (Figure 1). The proposal aimed to study the soybean genome from its organization into the structural level, seeking to characterize and sequence important genomic regions and their products, thus contributing to the identification of genes using transcriptional and proteomic methods, especially considering the plant response to different biotic and abiotic stresses that affect the culture in the Southern hemisphere. Still, the GENOSOJA network aimed to approach not only whether a gene is induced or suppressed under a given condition, but also to determine the levels at which it is expressed, the interactions with other genes, their physical location and products, allowing the identification of important genes and metabolic pathways, vital for the development and study of plants tolerant to challenging situations. The GENOSOJA project is still in course and is structured into six Project Components (Figure 2), including management and addressing of different aspects of the soybean genome: I. Project management - responsible for the project administration, organization of meetings, group integration and research reports, among others. II. Structural Genomics - includes research activities related to the genomic physical architecture, including BAC anchoring (in the cultivar Conquista), promoter analysis and sequencing of gene-rich regions, also in comparison with other wild relatives of the genus Glycine, allowing studies of synteny and indication of regions important for ressequencing. This component is also responsible for the identification of single base polymorphisms (SNPs), very important for mapping purposes and marker assisted selection. III. Transcriptomics -comprises the largest research group, responsible for various expression profiling approaches using different strategies to access transcripts generated under different biotic (Asian rust: Phakopsora pachyrhizi, CPMMV: Cowpea mild mottle virus, nematodes: Meloydogyne javanica and Pratylenchus brachyurus) and abiotic (water deficit) stresses. In this workgroup different strategies were used, including: a) Subtractive cDNA libraries (76 bp tags, Solexa Illumina® sequencing) using contrasting materials submitted to biotic interactions, including diseases (~40 million tags; Asian rust and virus inoculation) and beneficial interactions (~10 million tags; inoculation with Bradyrhizobium japonicum), as well as water deficit (~42 million tags, comparing tolerant and susceptible accessions). b) SuperSAGE comprising ~3,2 Solexa Illumina® 26-bp tags distributed in six libraries generated under biotic (water deficit) and abiotic (Asian rust) stress comparisons. c) MicroRNA libraries (Solexa Illumina®, 1924 bp) including four libraries regarding water deficit ( 4,8 millions miRNAs) and other four regarding Asian rust (~7,9 million miRNAs). d) cDNA sequences (2,112 sequences, Sanger method) from roots infested with the nematode M. javanica compared with non stressed control. The three first above mentioned experiments were carried out using the same experimental conditions, generating an extensive comparable dataset to allow the understanding of the gene expression dynamic (Subtractive cDNA and SuperSAGE libraries), including biotic and abiotic cross-talk responses as well as the post transcriptional control (miRNA). IV. Proteomics -aimed to study the protein profile of soybean plants, low-mass protein and peptides identification and protein-protein interactions, using the same accessions and biological conditions established for the transcriptomic analyses to ensure complementarity and reduction of experimental variability, and thus, allowing the integration of both datasets in the functional characterization of the soybean genome. V. Expression Assays (transgenesis) -considering the results of transcriptomics and proteomics, most valuable gene candidates are being transformed in order to infer about their effects or biological function. Members of this group are also evaluating the vicinity of genes (UTRs) for the identification of regulatory regions (promoters, enhancers, cis-elements, etc.) that control their expression. VI. Bioinformatics -this workgroup developed the GENOSOJA database (see web resource) that includes a set of tools integrating the entire project data as compared with available sequences from other public data banks. The present issue represents the starting point of an extensive catalogue of products generated by the GENO-SOJA consortium, since all members agree that many additional inferences will be soon mature for publication and application to breeding projects. Thousands of candidate genes differentially expressed have been identified and are being validated using quantitative real time PCR, many regarding strongly induced genes in contrasting libraries (e.g. stressed against control or tolerant against sensible in the same condition). Many of them refer to uncharacterized genes, with no given function, representing relevant data to be worked out in future functional studies, since they may represent not yet described genes, some possibly unique to legumes and important for plant breeding. Finally, the present volume does not represent a milestone for completion of the GENOSOJA project, but an announcement of its birth, crowned with solid growth, integration and consolidation prospects. The data generated by the GENOSOJA consortium will also join the worldwide effort to study the soybean genome through the participation in the International Soybean Genome Consortium (ISGC). In this sense, the next step involves the public release of the generated data, which shall be available for the world community, allowing the effective integration with other networks throughout the world

    Frequency analysis of the first-overtone RR Lyrae stars based on the Extended Aperture Photometry from the K2 data

    Full text link
    Additional low-amplitude signals are observed in many RR Lyrae stars, beside the pulsations in radial modes. The most common ones are short-period signals forming a period ratio of around 0.60--0.65 with the first overtone, or long-period signals forming a period ratio of around 0.68. The RR Lyrae stars may also exhibit quasi-periodic modulation of the light curves, known as the Blazhko effect. We used the extensive sample of the first-overtone RR Lyrae stars observed by the Kepler telescope during the K2 mission to search for and characterize these low-amplitude additional signals. K2 data provides space-based photometry for a statistically significant sample. Hence this data is excellent to study in detail pulsation properties of RR Lyrae stars. We used K2 space-based photometry for RR Lyrae candidates from Campaigns 0-19. We selected RR Lyrae stars pulsating in the first overtone and performed a frequency analysis for each star to characterize their frequency contents. We classified 452 stars as first-overtone RR Lyrae. From that sample, we selected 281 RR0.61_{0.61} stars, 67 RR0.68_{0.68} stars, and 68 Blazhko stars. We found particularly interesting stars which show all of the above phenomena simultaneously. We detected signals in RR0.61_{0.61} stars that form period ratios lower than observed for the majority of stars. These signals likely form a new sequence in the Petersen diagram, around a period ratio of 0.60. In 32 stars we detected additional signals that form a period ratio close to that expected in RRd stars, but the classification of these stars as RRd is uncertain. We also report a discovery of additional signals in eight stars that form a new group in the Petersen diagram around the period ratio of 0.465-0.490. The nature of this periodicity remains unknown.Comment: 29 pages, 29 figures, 4 tables, accepted for publication in A&A, full tables are available upon request before publicatio
    corecore