754 research outputs found

    Stiff Person Spectrum Disorders—An Update and Outlook on Clinical, Pathophysiological and Treatment Perspectives

    Get PDF
    Stiff person spectrum disorders (SPSD) are paradigm autoimmune movement disorders characterized by stiffness, spasms and hyperekplexia. Though rare, SPSD represent a not-to-miss diagnosis because of the associated disease burden and treatment implications. After decades as an enigmatic orphan disease, major advances in our understanding of the evolving spectrum of diseases have been made along with the identification of multiple associated autoantibodies. However, the most important recent developments relate to the recognition of a wider affection, beyond the classic core motor symptoms, and to further insights into immunomodulatory and symptomatic therapies. In this review, we summarize the recent literature on the clinical and paraclinical spectrum, current pathophysiological understanding, as well as current and possibly future therapeutic strategies

    Blood–Brain Barrier Disruption Is Not Associated With Disease Aggressiveness in Amyotrophic Lateral Sclerosis

    Get PDF
    The pathogenesis of the fatal neurodegenerative condition amyotrophic lateral sclerosis (ALS) remains to be fully understood. Blood–brain barrier damage (BBBD) has been implicated as an exacerbating factor in several neurodegenerative conditions, including ALS. Therefore, this cross-sectional study used the novel D50 progression model to assess the clinical relevance of BBBD within a cohort of individuals with either ALS ( n = 160) or ALS mimicking conditions ( n = 31). Routine laboratory parameters in cerebrospinal fluid (CSF) and blood were measured, and the ratio of CSF to serum albumin levels (Qalb) was used as a proxy measure of BBBD. In the univariate analyses, Qalb levels correlated weakly with disease aggressiveness (as indicated by individual D50 values) and physical function (as measured by ALS Functional Rating Scale). However, after adjustment for cofactors in the elastic net regularization, only having limb-onset disease was associated with BBBD. The results reported here emphasize the clinical heterogeneity of ALS and the need for additional longitudinal and multi-modal studies to fully clarify the extent and effect of BBBD in ALS

    MaRCoS, an open-source electronic control system for low-field MRI

    Full text link
    Every magnetic resonance imaging (MRI) device requires an electronic control system that handles pulse sequences and signal detection and processing. Here we provide details on the architecture and performance of MaRCoS, a MAgnetic Resonance COntrol System developed by an open international community of low-field MRI researchers. MaRCoS is inexpensive and can handle cycle-accurate sequences without hard length limitations, rapid bursts of events, and arbitrary waveforms. It can also be easily adapted to meet further specifications required by the various academic and private institutions participating in its development. We describe the MaRCoS hardware, firmware and software that enable all of the above, including a Python-based graphical user interface for pulse sequence implementation, data processing and image reconstruction.Comment: 10 pages, 4 figure

    Probing the Solution Structure of IκB Kinase (IKK) Subunit γ and Its Interaction with Kaposi Sarcoma-associated Herpes Virus Flice-interacting Protein and IKK Subunit β by EPR Spectroscopy.

    Get PDF
    Viral flice-interacting protein (vFLIP), encoded by the oncogenic Kaposi sarcoma-associated herpes virus (KSHV), constitutively activates the canonical nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) pathway. This is achieved through subversion of the IκB kinase (IKK) complex (or signalosome), which involves a physical interaction between vFLIP and the modulatory subunit IKKγ. Although this interaction has been examined both in vivo and in vitro, the mechanism by which vFLIP activates the kinase remains to be determined. Because IKKγ functions as a scaffold, recruiting both vFLIP and the IKKα/β subunits, it has been proposed that binding of vFLIP could trigger a structural rearrangement in IKKγ conducive to activation. To investigate this hypothesis we engineered a series of mutants along the length of the IKKγ molecule that could be individually modified with nitroxide spin labels. Subsequent distance measurements using electron paramagnetic resonance spectroscopy combined with molecular modeling and molecular dynamics simulations revealed that IKKγ is a parallel coiled-coil whose response to binding of vFLIP or IKKβ is localized twisting/stiffening and not large-scale rearrangements. The coiled-coil comprises N- and C-terminal regions with distinct registers accommodated by a twist: this structural motif is exploited by vFLIP, allowing it to bind and subsequently activate the NF-κB pathway. In vivo assays confirm that NF-κB activation by vFLIP only requires the N-terminal region up to the transition between the registers, which is located directly C-terminal of the vFLIP binding site

    All-solid-state continuous-wave laser systems for ionization, cooling and quantum state manipulation of beryllium ions

    Get PDF
    We describe laser systems for photoionization, Doppler cooling, and quantum state manipulation of beryllium ions. For photoionization of neutral beryllium, we have developed a continuous-wave 235nm source obtained by two stages of frequency doubling from a diode laser at 940nm. The system delivers up to 400 mW at 470nm and 28 mW at 235nm. For control of the beryllium ion, three laser wavelengths at 313nm are produced by sum-frequency generation and second-harmonic generation from four infrared fiber lasers. Up to 7.2 W at 626nm and 1.9 W at 313nm are obtained using two pump beams at 1051 and 1551nm. Intensity drifts of around 0.5% per hour have been measured over 8h at a 313nm power of 1W. These systems have been used to load beryllium ions into a segmented ion trap

    Integrative genomic analysis reveals low T-cell infiltration as the primary feature of tobacco use in HPV-positive oropharyngeal cancer

    Get PDF
    Although tobacco use is an independent adverse prognostic feature in HPV(+) oropharyngeal squamous cell carcinoma (OPSCC), the biologic features associated with tobacco use have not been systematically investigated. We characterized genomic and immunologic features associated with tobacco use through whole exome sequencing, mRNA hybridization, and immunohistochemical staining in 47 HPV(+) OPSCC tumors. Low expression of transcripts in a T cell-inflamed gene expression profile (TGEP) was associated with tobacco use at diagnosis and lower overall and disease-free survival. Tobacco use was associated with an increased proportion of T \u3e C substitutions and a lower proportion of expected mutational signatures, but not with increases in mutational burden or recurrent oncogenic mutations. Our findings suggest that rather than increased mutational burden, tobacco\u27s primary and clinically relevant association in HPV(+) OPSCC is immunosuppression of the tumor immune microenvironment. Quantitative assays of T cell infiltration merit further study as prognostic markers in HPV(+) OPSCC

    Basic CSF parameters and MRZ reaction help in differentiating MOG antibody-associated autoimmune disease versus multiple sclerosis

    Get PDF
    BackgroundMyelin oligodendrocyte glycoprotein antibody-associated autoimmune disease (MOGAD) is a rare monophasic or relapsing inflammatory demyelinating disease of the central nervous system (CNS) and can mimic multiple sclerosis (MS). The variable availability of live cell-based MOG-antibody assays and difficulties in interpreting low-positive antibody titers can complicate diagnosis. Literature on cerebrospinal fluid (CSF) profiles in MOGAD versus MS, one of the most common differential diagnoses, is scarce. We here analyzed the value of basic CSF parameters to i) distinguish different clinical MOGAD manifestations and ii) differentiate MOGAD from MS.MethodsThis is retrospective, single-center analysis of clinical and laboratory data of 30 adult MOGAD patients and 189 adult patients with relapsing-remitting multiple sclerosis. Basic CSF parameters included CSF white cell count (WCC) and differentiation, CSF/serum albumin ratio (QAlb), intrathecal production of immunoglobulins, CSF-restricted oligoclonal bands (OCB) and MRZ reaction, defined as intrathecal production of IgG reactive against at least 2 of the 3 viruses measles (M), rubella (R) and varicella zoster virus (Z).ResultsMOGAD patients with myelitis were more likely to have a pleocytosis, a QAlb elevation and a higher WCC than those with optic neuritis, and, after review and combined analysis of our and published cases, they also showed a higher frequency of intrathecal IgM synthesis. Compared to MS, MOGAD patients had significantly more frequently neutrophils in CSF and WCC>30/µl, QAlb>10×10-3, as well as higher mean QAlb values, but significantly less frequently CSF plasma cells and CSF-restricted OCB. A positive MRZ reaction was present in 35.4% of MS patients but absent in all MOGAD patients. Despite these associations, the only CSF parameters with relevant positive likelihood ratios (PLR) indicating MOGAD were QAlb>10×10-3 (PLR 12.60) and absence of CSF-restricted OCB (PLR 14.32), whereas the only relevant negative likelihood ratio (NLR) was absence of positive MRZ reaction (NLR 0.00).ConclusionBasic CSF parameters vary considerably in different clinical phenotypes of MOGAD, but QAlb>10×10-3 and absence of CSF-restricted OCB are highly useful to differentiate MOGAD from MS. A positive MRZ reaction is confirmed as the strongest CSF rule-out parameter in MOGAD and could be useful to complement the recently proposed diagnostic criteria

    cGAS Drives Noncanonical-Inflammasome Activation in Age-Related Macular Degeneration

    Get PDF
    Geographic atrophy is a blinding form of age-related macular degeneration characterized by retinal pigmented epithelium (RPE) death; the RPE also exhibits DICER1 deficiency, resultant accumulation of endogenous Alu-retroelement RNA, and NLRP3-inflammasome activation. How the inflammasome is activated in this untreatable disease is largely unknown. Here we demonstrate that RPE degeneration in human-cell-culture and mouse models is driven by a noncanonical-inflammasome pathway that activates caspase-4 (caspase-11 in mice) and caspase-1, and requires cyclic GMP-AMP synthase (cGAS)-dependent interferon-β production and gasdermin D-dependent interleukin-18 secretion. Decreased DICER1 levels or Alu-RNA accumulation triggers cytosolic escape of mitochondrial DNA, which engages cGAS. Moreover, caspase-4, gasdermin D, interferon-β, and cGAS levels were elevated in the RPE in human eyes with geographic atrophy. Collectively, these data highlight an unexpected role of cGAS in responding to mobile-element transcripts, reveal cGAS-driven interferon signaling as a conduit for mitochondrial-damage-induced inflammasome activation, expand the immune-sensing repertoire of cGAS and caspase-4 to noninfectious human disease, and identify new potential targets for treatment of a major cause of blindness
    corecore