36 research outputs found

    Mid-Holocene coastline reconstruction from geomorphological sea level indicators in the Tràng An World Heritage Site, Northern Vietnam

    Get PDF
    In this paper we present a high resolution palaeo coastline model for the isolated limestone massif of Tràng An, Ninh Bình province, Vietnam. The archaeological and palaeoecological record here comprise rich archives of human activity set within a landscape that was cyclically transformed between inland and archipelagic states under the influence of past sea level changes. These records have become informative proxies in the study of current sea level rise. Well-preserved notches along the vertical limestone cliffs within the study property reveal several phases of prolonged stable sea levels that likely pertain to the Mid-Holocene marine transgression 8 ka BP to 4 ka BP and allow for detailed coastline reconstructions for parts of the Red River Delta (RRD). The resulting coastline model facilitates a closer look at past human responses to landscape and environmental changes at local and individual site-level, which improves our understanding of past human adaptations to climate-change induced sea level rise. These data also stand to inform current coastal vulnerability assessments and climate change response models

    Efficacy and Safety of Vamorolone in Duchenne Muscular Dystrophy: A 30-Month Nonrandomized Controlled Open-Label Extension Trial

    Get PDF
    Importance: Vamorolone is a synthetic steroidal drug with potent anti-inflammatory properties. Initial open-label, multiple ascending dose-finding studies of vamorolone among boys with Duchenne muscular dystrophy (DMD) found significant motor function improvement after 6 months treatment in higher-dose (ie, ≥2.0 mg/kg/d) groups. / Objective: To investigate outcomes after 30 months of open-label vamorolone treatment. / Design, Setting, and Participants: This nonrandomized controlled trial was conducted by the Cooperative International Neuromuscular Research Group at 11 US and non-US study sites. Participants were 46 boys ages 4.5 to 7.5 years with DMD who completed the 6-month dose-finding study. Data were analyzed from July 2020 through November 2021. / Interventions: Participants were enrolled in a 24-month, long-term extension (LTE) study with vamorolone dose escalated to 2.0 or 6.0 mg/kg/d. / Main Outcomes and Measures: Change in time-to-stand (TTSTAND) velocity from dose-finding baseline to end of LTE study was the primary outcome. Efficacy assessments included timed function tests, 6-minute walk test, and NorthStar Ambulatory Assessment (NSAA). Participants with DMD treated with glucocorticoids from the Duchenne Natural History Study (DNHS) and NorthStar United Kingdom (NSUK) Network were matched and compared with participants in the LTE study receiving higher doses of vamorolone. / Results: Among 46 boys with DMD who completed the dose-finding study, 41 boys (mean [SD] age, 5.33 [0.96] years) completed the LTE study. Among 21 participants treated with higher-dose (ie, ≥2.0 mg/kg/d) vamorolone consistently throughout the 6-month dose-finding and 24-month LTE studies with data available at 30 months, there was a decrease in mean (SD) TTSTAND velocity from baseline to 30 months (0.206 [0.070] rises/s vs 0.189 (0.124) rises/s), which was not a statistically significant change (-0.011 rises/s; CI, -0.068 to 0.046 rises/s). There were no statistically significant differences between participants receiving higher-dose vamorolone and matched participants in the historical control groups receiving glucocorticoid treatment (75 patients in DNHS and 110 patients in NSUK) over a 2-year period in NSAA total score change (0.22 units vs NSUK; 95% CI, -4.48 to 4.04]; P = .92), body mass index z score change (0.002 vs DNHS SD/mo; 95% CI, -0.006 to 0.010; P = .58), or timed function test change. Vamorolone at doses up to 6.0 mg/kg/d was well tolerated, with 5 of 46 participants discontinuing prematurely and for reasons not associated with study drug. Participants in the DNHS treated with glucocorticoids had significant growth delay in comparison with participants treated with vamorolone who had stable height percentiles (0.37 percentile/mo; 95% CI, 0.23 to 0.52 percentile/mo) over time. / Conclusions and Relevance: This study found that vamorolone treatment was not associated with a change in TTSTAND velocity from baseline to 30 months among boys with DMD aged 4 to 7 years at enrollment. Vamorolone was associated with maintenance of muscle strength and function up to 30 months, similar to standard of care glucocorticoid therapy, and improved height velocity compared with growth deceleration associated with glucocorticoid treatment, suggesting that vamorolone may be an attractive candidate for treatment of DMD. Trial Registration: ClinicalTrials.gov Identifier: NCT03038399

    Why do firms prioritise certain sustainable development goals? An exploratory study

    No full text
    Imperial Users onl

    MULTILEVEL CMFD ACCELERATION METHODS FOR WHOLE CORE REACTOR SIMULATION IN VERA

    Get PDF
    Ongoing efforts are being made to improve the performance of MPACT as the deterministic neutron transport solver in the Virtual Environment for Reactor Analysis (VERA). As other parts of the code have been improved, the coarse mesh finite difference method (CMFD) has come to take up a significant portion of the runtime. Multilevel-in-energy CMFD and multilevel-in-space CMFD solvers have been used to improve CMFD solver performance. A new multilevel-in-space-and-energy CMFD solver is being introduced that combines components of these two methods. W-Cycles and partial W-Cycles are being investigated to further improve the efficiency of the multilevel-in-energy CMFD solver. The performance of these methods is demonstrated on full core reactor physics problems of interest to VERA

    DEVELOPMENT OF A COUPLED SUBPLANE CAPABILITY IN MPACT

    Get PDF
    Recent efforts in the development of the deterministic transport code MPACT have been devoted to preparing the 2D/1D subplane method to be a production-level capability, as well as leveraging a multilevel coarse mesh finite difference (CMFD) approach to substantially reduce the runtime of target problems. For example, as compared to the previous default 2D/1D solver in MPACT on a standard quarter core model, the new solver reduces in core-hour requirements by ~5–6×. Previous work focused solely on cases without multiphysics feedback, which is obviously important for analyzing the more realistic problems of operating reactors. The work presented in this article focuses on efforts to incorporate thermal hydraulics (TH) coupling through CTF by leveraging what are termed as subgrid solvers, which effectively treat material heterogeneities within subplane regions. Previous efforts have targeted using subgrid solvers for control rods and spacer grids; in this work, they are applied to account for the material property heterogeneities with regards to temperature/density distributions. This will allow the fidelity of coupling to be maintained while still reaping the performance benefits. These new developments are demonstrated on two problems: (1) a single assembly case with feedback, known as Progression Problem 6a, and (2) a 3×3 cluster of assemblies with feedback based on Progression Problem 4a. The results demonstrate notable performance improvement potential for cases with TH feedback, but this approach is more dependent on the iteration process

    DEVELOPMENT OF A COUPLED SUBPLANE CAPABILITY IN MPACT

    No full text
    Recent efforts in the development of the deterministic transport code MPACT have been devoted to preparing the 2D/1D subplane method to be a production-level capability, as well as leveraging a multilevel coarse mesh finite difference (CMFD) approach to substantially reduce the runtime of target problems. For example, as compared to the previous default 2D/1D solver in MPACT on a standard quarter core model, the new solver reduces in core-hour requirements by ~5–6×. Previous work focused solely on cases without multiphysics feedback, which is obviously important for analyzing the more realistic problems of operating reactors. The work presented in this article focuses on efforts to incorporate thermal hydraulics (TH) coupling through CTF by leveraging what are termed as subgrid solvers, which effectively treat material heterogeneities within subplane regions. Previous efforts have targeted using subgrid solvers for control rods and spacer grids; in this work, they are applied to account for the material property heterogeneities with regards to temperature/density distributions. This will allow the fidelity of coupling to be maintained while still reaping the performance benefits. These new developments are demonstrated on two problems: (1) a single assembly case with feedback, known as Progression Problem 6a, and (2) a 3×3 cluster of assemblies with feedback based on Progression Problem 4a. The results demonstrate notable performance improvement potential for cases with TH feedback, but this approach is more dependent on the iteration process

    EFFECTS OF FUEL TEMPERATURE-SHAPING FUNCTIONS ON XENON OSCILLATIONS

    Get PDF
    In coupled multiphysics simulations, single pin-averaged values are typically used to describe the temperature, power, and burnup within a given fuel pin. However, since xenon oscillations are largely driven by fuel temperatures, radially dependent quantities have been implemented in the Virtual Environment for Reactor Applications. These radial-shaping functions are based on Zernike polynomial expansions and allow information to pass effectively between codes with differing spatial meshes. This work examines the effects of radial fuel temperature-shaping functions on the behavior of axial xenon oscillations. A test problem was developed from full-core, multi-cycle depletions using as-built fuel data. The center 25 assemblies of the full-core case were used to test the radial-shaping function by inducing an axial xenon oscillation using an instantaneous control rod movement. The test case was run with and without the radial shapes, and each component was also run individually. Including the shaping functions significantly impacted the xenon oscillations for this problem; the magnitude and period of the oscillations were altered, and large pin power and soluble boron differences were observed. Testing each component individually showed that the radial fuel temperature-shaping function had the largest effect

    EFFECTS OF FUEL TEMPERATURE-SHAPING FUNCTIONS ON XENON OSCILLATIONS

    No full text
    In coupled multiphysics simulations, single pin-averaged values are typically used to describe the temperature, power, and burnup within a given fuel pin. However, since xenon oscillations are largely driven by fuel temperatures, radially dependent quantities have been implemented in the Virtual Environment for Reactor Applications. These radial-shaping functions are based on Zernike polynomial expansions and allow information to pass effectively between codes with differing spatial meshes. This work examines the effects of radial fuel temperature-shaping functions on the behavior of axial xenon oscillations. A test problem was developed from full-core, multi-cycle depletions using as-built fuel data. The center 25 assemblies of the full-core case were used to test the radial-shaping function by inducing an axial xenon oscillation using an instantaneous control rod movement. The test case was run with and without the radial shapes, and each component was also run individually. Including the shaping functions significantly impacted the xenon oscillations for this problem; the magnitude and period of the oscillations were altered, and large pin power and soluble boron differences were observed. Testing each component individually showed that the radial fuel temperature-shaping function had the largest effect

    A lumped parameter method of characteristics approach and multigroup kernels applied to the subgroup self-shielding calculation in MPACT

    No full text
    An essential component of the neutron transport solver is the resonance self-shielding calculation used to determine equivalence cross sections. The neutron transport code, MPACT, is currently using the subgroup self-shielding method, in which the method of characteristics (MOC) is used to solve purely absorbing fixed-source problems. Recent efforts incorporating multigroup kernels to the MOC solvers in MPACT have reduced runtime by roughly 2×. Applying the same concepts for self-shielding and developing a novel lumped parameter approach to MOC, substantial improvements have also been made to the self-shielding computational efficiency without sacrificing any accuracy. These new multigroup and lumped parameter capabilities have been demonstrated on two test cases: (1) a single lattice with quarter symmetry known as VERA (Virtual Environment for Reactor Applications) Progression Problem 2a and (2) a two-dimensional quarter-core slice known as Problem 5a-2D. From these cases, self-shielding computational time was reduced by roughly 3–4×, with a corresponding 15–20% increase in overall memory burden. An azimuthal angle sensitivity study also shows that only half as many angles are needed, yielding an additional speedup of 2×. In total, the improvements yield roughly a 7–8× speedup. Given these performance benefits, these approaches have been adopted as the default in MPACT

    The implications of global oil exploration for the conservation of terrestrial wildlife

    Get PDF
    Global dependence upon fossil fuels persists in the 21st century. With known deposits of oil diminishing, technological advancements and alternative financing have facilitated explorations into a number of sensitive habitats around the world. Such pursuits challenge global priorities relating to the ideals of energy production versus those of biodiversity protection. Presently, the implications of oil extraction on terrestrial wildlife, for instance, are unclear, undermining the ability to meet this challenge. We synthesized the literature to quantify the range of documented impacts of oil extraction on terrestrial wildlife and to identify prevailing knowledge gaps. Our review returned 31 studies documenting various effects of oil extraction, across the exploration, development, production, and abandonment phases, on terrestrial wildlife. These studies were most often based in North and South America, tended to focus on the development phase of oil extraction projects, and often focused on the impacts on mammals. We found that terrestrial wildlife were generally negatively impacted by oil extraction through road development, seismic surveys, hydraulic fracturing, installation of oil wells, contamination, and other extraction disturbances. We also considered the implications of this review on oil extraction in Murchison Falls National Park and the broader Murchison Falls Conservation Area, a highly biodiverse region in Uganda. Herein, we detected an important knowledge gap relating to the ways in which various oil extraction activities may increase the potential for human-wildlife conflict. Reviews of this type are essential for quantifying the effects of oil extraction on terrestrial wildlife and can inform future decision-making on natural resource extraction in ecologically-sensitive habitats globally
    corecore