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ABSTRACT 
 

Recent efforts in the development of the deterministic transport code MPACT have been devoted to 

preparing the 2D/1D subplane method to be a production-level capability, as well as leveraging a multilevel 

coarse mesh finite difference (CMFD) approach to substantially reduce the runtime of target problems. For 

example, as compared to the previous default 2D/1D solver in MPACT on a standard quarter core model, 

the new solver reduces in core-hour requirements by ~5–6×.  
 

Previous work focused solely on cases without multiphysics feedback, which is obviously important for 

analyzing the more realistic problems of operating reactors. The work presented in this article focuses on 

efforts to incorporate thermal hydraulics (TH) coupling through CTF by leveraging what are termed as 

subgrid solvers, which effectively treat material heterogeneities within subplane regions. Previous efforts 

have targeted using subgrid solvers for control rods and spacer grids; in this work, they are applied to 

account for the material property heterogeneities with regards to temperature/density distributions. This 

will allow the fidelity of coupling to be maintained while still reaping the performance benefits. 
 

These new developments are demonstrated on two problems: (1) a single assembly case with feedback, 

known as Progression Problem 6a, and (2) a 3×3 cluster of assemblies with feedback based on Progression 
Problem 4a. The results demonstrate notable performance improvement potential for cases with TH 

feedback, but this approach is more dependent on the iteration process. 
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1. INTRODUCTION 
 

In the past several years, work in MPACT [1], the primary deterministic transport solver in the Consortium 

for Advanced Simulation of Light Water Reactors (CASL) Virtual Environment for Reactor Analysis 

(VERA) [2], has focused on significantly improving the overall performance of the calculations, and many 

components within the code have been improved. More recently, efforts have been devoted to preparing the 

2D/1D subplane method to be a production-level capability, as well as leveraging a multilevel coarse mesh 

finite difference (CMFD) approach to reduce the runtime of target problems [3,4]. For example, compared 

to the previous default 2D/1D solver in MPACT on a quarter core model, core-hour requirements were 

reduced by ~5–6×. However, subplane development has focused solely on cases without multiphysics 

feedback, which is obviously important for analyzing the more realistic problems of operating reactors. 

 

The work in this article focuses on the development necessary to incorporate thermal hydraulics (TH) 

coupling through the CTF subchannel code [5]. MPACT/CTF coupling has been critical to the Consortium 

for Advanced Simulation of Light Water Reactors (CASL) mission and could significantly benefit from the 

runtime improvements possible using the subplane method. Previous work has dealt with the addition of 

subgrid solvers [6,7], which effectively treat material heterogeneities within subplane regions. While these 

previous efforts have targeted using subgrid solvers for control rods and spacer grids, they will be applied 

here to account for material property heterogeneities in temperature/density distributions, allowing the 

accuracy and fidelity of coupling to be maintained while capitalizing on subplane performance benefits.  
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2. SUBPLANE METHODOLOGY

In the 2D/1D approach, 3D problems are decomposed into an axial stack of radial planes [1], where 2D

method of characteristics (MOC) is used to solve radially [8], and 1D nodal methods operating on a 

homogenized pin-cell basis are used to solve axially [9]. The 2D and 1D solvers are coupled through 

transverse leakage, and CMFD is used to accelerate the global solution. MPACT used one-to-one mapping 

between the nodal and MOC solvers axially by default. However, a target axial node size of ~8 cm can 

yield a substantial number (~55–60) of MOC planes 

Originating from research performed using DeCART [10], the subplane method was used in the 2D/1D 

method in MPACT and could offer substantial reductions in computational burden. In the subject approach, 

multiple axial nodes are allowed to exist within each MOC plane allowing the axial solvers to be refined 

independently [10]. In the results shown herein, the subplane/nodal axial mesh is targeted to be very 

consistent with the axial meshes currently employed in MPACT, but with fewer MOC planes, the number 

of which depends on which material boundaries are simulated more explicitly.

Graham implemented the initial MPACT subplane capability [6], focusing mainly on ways to treat the 

control rod decusping problem which manifests itself when a control rod is partially inserted into an MOC 

plane. Graham also successfully developed several subgrid solver variants to treat rodded and unrodded 

regions of the MOC plane with a partially inserted rod to inform the coarse mesh cross sections used in the 

CMFD and 1D nodal axial sweepers. 

3. SUBGRID BACKGROUND

In the subgrid approach, cross sections used in the CMFD and axial nodal solves were modified to more 

accurately represent material changes that could be occurring within each MOC plane. For example, in a 

more traditional subplane approach, spacer grids would be simulated explicitly with a separate MOC plane 

(and a subplane in between the spacers). However, by using subgrid, the spacer grid can be treated at the 

top of the MOC plane, where the subgrid solver handles the axial heterogeneity of the subplane nodes 

accurately, homogenizing as an approach for the MOC plane cross sections [4]. The same basic concept 

can be applied with feedback, except in this case each subplane level should be treated as a different cross 

section set based on changes to fuel, gap, clad, moderator temperatures, and moderator density (Figure 1).

Figure 1. Subgrid Illustration Applied to TH Coupling.
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Here, we can see that the spacer grid is treated separately here to focus on the thermal hydraulic treatment, 

so subplane is only used between the spacer grids. This allows us to isolate the solution impact of treated 

feedback with subgrid from treating spacers with subgrid. In Figure 1, 5 subplanes are represented in MOC 

Plane 1, each with separate fuel and moderator temperatures/densities.  For simplicity, clad and gap 

temperatures were neglected from the figure.

Two primary variants of subgrid solvers are relevant to this work (1) a subplane treatment in which axial 

cross section data within the MOC plane vary to correctly capture the material changes (rodded vs. 

unrodded or spacer grid vs. no grid), and (2) a collision probabilities treatment, which is an extension of 

the subplane treatment that employs a 1D collision probabilities method (CPM) solver for each disparate 

region of the subplane using the flux solution to better inform the coarse mesh-homogenized cross sections. 

More details on the subplane and collision probabilities treatments can be found in Graham’s 

dissertation [2], but in this work, the subplane subgrid treatment is used exclusively.

4. RESULTS

4.1 Overview of Cases Evaluated

Results for two progression problems are shown here: (1) Problem 6a, Quarter Assembly, and (2) Problem 
4a, now modified to include TH coupling [11]. To focus on the accuracy of the approximations imposed 

by the subplane method and the subgrid treatment of the spacer grids, the control rods were removed from 

all cases.

Six different solver configurations were evaluated for each of the following cases to assess the impact of 

relevant accuracy and performance. Effectively, the comparisons are subplane vs. default 2D/1D without 

subplane, and performance is evaluated with three different CMFD options (default, multilevel-in-space, 

and multilevel-in-energy):

1. Default: default mesh and solver options (explicit MOC planes for each axial level [58 total planes], a

single level CMFD solver for all 51 groups, and pin-wise coarse mesh cells in the system)

2. Multilevel (ML) Space: same axial mesh as Default but using a multilevel-in-space CMFD solver

3. ML Energy: same axial mesh as Default but using a 3-level multilevel-in-energy CMFD solver; Level 

1 has 51 groups, Level 2 has 10 groups, and Level 3 has 2 groups

4. Subplane: same CMFD option as Default, with explicit MOC planes for spacer grid, but with a single 

MOC plane between spacer grids, for a total of 23 MOC planes

5. Subplane+ML Space: same mesh as Subplane with ML Space CMFD solver 

6. Subplane+ML Energy: same mesh as Subplane with ML Energy CMFD solver.

Additional details of the multilevel CMFD solvers is available in a companion paper to the conference [12], 

but effectively it is of interest to compare multiple CMFD options yield significant differences in runtime.  

For example, the load balancing during the CMFD solve can become suboptimal with various forms of 

subplane approximation and multilevel solvers (particularly in space, which includes an additional subplane 

spatial collapse) can help mitigate the performance burden of the load imbalance.

In these configurations, options 1–3 should yield identical solutions, as should options 4–6. However, the 

performance of each option varies.  Essentially, options 1-3 all explicitly resolve all axial levels with an 

MOC plane and only vary in their CMFD options.  Similarly 4-6 all use subplane treatment between spacer 

grids, and only vary in CMFD option.
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4.2 Quarter Assembly with TH Coupling (Progression Problem 6a)

Figure 2 shows the radial and axial layouts of the quarter assembly model, Progression Problem 6 [11]. It 

is a standard Westinghouse 17 × 17 assembly with 6 Zircaloy spacer grids in the active fuel and 2 Inconel 

grids, one at the bottom of the active fuel, and another in the upper reflector region. It is worth noting that 

it is entirely consistent with VERA Problem 3a, but it is simulated at 17.67 MWt and 0.6823 Mlbs/hr.

Figure 2. Problem 6a Specification [11].

Table I shows the solution differences for the 6 cases, with Default as the reference. In general, subplane 

does a very good job of sustaining the Default solution with a 5 pcm eigenvalue difference and less than 

0.15% power differences. While incorporating subgrid solvers introduces some error due to the 

approximations made to homogenized MOC cross sections and self-shielding, it is reasonable for the 

method. It can also be seen that the multilevel (ML) Space and ML Energy CMFD solvers yield similar 

results, with minor variation. This is related to the convergence criteria used by default in MPACT. The 

ML CMFD solvers change the path to solution, so the converged solution can deviate slightly from other 

cases in which the solution should be identical.

Table I. Problem 6a Accuracy Comparisons.

Case Eigenvalue Δk (pcm)
ΔP 

(RMS%)

ΔP 

(MAX%)

Default 1.16550 --- --- ---

ML Space 1.16550 0.01 0.020 0.031

ML Energy 1.16550 0.25 0.028 0.058

Subplane 1.16555 5.00 0.058 0.150

Subplane + ML Space 1.16555 5.00 0.036 0.111

Subplane + ML Energy 1.16555 5.00 0.035 0.116
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Figure 3 compares axial temperature distribution in the assembly (averaged radially) with Default and 

Subplane. The differences are less than a degree Celsius at any point. Figure 4 shows a similar comparison 

for the axial power distribution, with all differences <0.15%. There is a slight trend in the difference data,

with underprediction of temperature near the bottom of the core and overprediction near the top.

Figure 3. Problem 6a Subplane vs. Default Axial Temperature Comparison.

Figure 4. Problem 6a Subplane vs. Default Axial Power Comparison.

Table II shows pertinent performance data from 6a calculations. Full axial decomposition was used in all 

cases, resulting in 58 procs without subplane and 23 procs with subplane. Running with subplane incurs
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more outer iterations to converge the problem, which diminishes the runtime savings observed in cases 

without feedback, but overall, core-hours can still be reduced substantially from ~16–10 with subplane and 

the default CMFD and nearly 5 with subplane and ML Space CMFD.

Table II. Problem 6a Performance Comparisons.

Case Iterations

Total 

Memory 

(GB)

Walltime 

(min)
Cores

Time 

(core hr)

Default 11 13.84 17.02 58 16.46

ML Space 11 13.97 13.73 58 13.28

ML Energy 12 14.14 11.79 58 11.40

Subplane 20 6.95 25.84 23 9.90

Subplane + ML Space 16 6.98 13.19 23 5.06

Subplane + ML Energy 24 7.13 29.39 23 11.27

It should also be noted that the performance gain from using subplane is also heavily mitigated because of 

the CTF runtime, which is a substantial portion of the total runtime. For example, in the ML space case, 

CTF took roughly 9 minutes of the 14 minute walltime and a similar amount of time in the subplane case. 

4.3 Colorset (Progression Problem 4a with Feedback)

Problem 4a is a 3 × 3 assembly colorset featuring two enrichments with burnable poison rods (Figure 5). 

The axial layout can be found in Godfrey [11]. Similarly, all cases have 58 or 23 planes and

processors/cores.

Figure 5. Problem 4a Colorset Radial Layout [11].

Table III shows the solution comparison for Problem 4a with feedback. In this case, slightly more notable 

solution differences are observed, and the maximum pin power errors are in the 0.5–0.6% range with 

subplane. In general, this is very good agreement, but some concern might be placed in how this error 

would propagate in depletion cases.
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Table III. Problem 4a Accuracy Comparisons.

Case Eigenvalue Δk (pcm)
ΔP 

(RMS%)

ΔP 

(MAX%)

Default 0.98963 --- --- ---

ML Space 0.98963 0.66 0.023 0.048

ML Energy 0.98963 0.59 0.051 0.151

Subplane 0.98969 -5.35 0.169 0.552

Subplane + ML Space 0.98969 -5.40 0.196 0.596

Subplane + ML Energy 0.98969 -4.54 0.200 0.613

Comparison data in Table IV show that while subplane provides a substantial memory reduction, the overall 

core-hour requirements are not substantially improved, as all core-hour requirements for the subplane cases 

increase. Detailed timing data suggest that much of the time for the subplane cases is still required in CMFD.

Table IV. Problem 4a performance comparisons.

Case Iterations Total memory (GB) Walltime (min) Cores
Time 

(core-hr)

Default 12 46.85 54.23 29 26.21

ML Space 12 46.75 42.28 29 20.44

ML Energy 11 47.76 44.13 29 21.33

Subplane 13 34.87 122.21 23 46.85

Subplane + ML Space 17 34.70 105.15 23 40.31

Subplane + ML Energy 12 35.73 76.29 23 29.24

5. CONCLUSIONS

This paper presents an extension of the 2D/1D subplane method to encompass TH feedback based on the 

basis of subgrid solvers that were previously used for control rod and spacer grid axial heterogeneities. This 

approach reduces the computation burden of coupled MPACT/CTF calculations to make them more 

tractable for industry users while still providing a sufficient level of accuracy by making reasonable 

approximations. In general, the accuracy of the new approach is very good with roughly 0.6% maximum 

pin power error observed. In the single assembly case, negligible differences were observed in power and 

temperature distributions while still providing noteworthy speedup of ~1.5–3×. In the colorset case, 

accuracy was still good, but larger pin power errors were observed at a little over 0.5%. This may be too 

high for a high-fidelity simulation capability, but future efforts can focus on minimizing this if possible 

through the use of the CPM-based subgrid solvers. Performance on the colorset, however, struggled with 

subplane, as the CMFD solve time increased. This area requires further work before the capability can be 

production-level, but the accuracy of the novel subgrid approach applied to temperature and density 

distributions is optimistic. 

Future work will also focus on incorporating depletion into the capability. Initial efforts have already been 

performed, with room for improvement in terms of accuracy. However, this will be crucial for the next steps 

of working toward comparisons with operating reactors.
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