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ABSTRACT 
 

Ongoing efforts are being made to improve the performance of MPACT as the deterministic 
neutron transport solver in the Virtual Environment for Reactor Analysis (VERA). As other 
parts of the code have been improved, the coarse mesh finite difference method (CMFD) has 
come to take up a significant portion of the runtime. Multilevel-in-energy CMFD and 
multilevel-in-space CMFD solvers have been used to improve CMFD solver performance. A 
new multilevel-in-space-and-energy CMFD solver is being introduced that combines 
components of these two methods. W-Cycles and partial W-Cycles are being investigated to 
further improve the efficiency of the multilevel-in-energy CMFD solver. The performance of 
these methods is demonstrated on full core reactor physics problems of interest to VERA. 
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1. INTRODUCTION 
 
To support the use of the Virtual Environment for Reactor Analysis (VERA), which is being developed by 
the Consortium for the Advanced Simulation of Light Water Reactors (CASL), development efforts have 
been devoted to improving the performance of various components of VERA. The work presented here 
focuses on accelerating the transport iterations by improving the coarse mesh finite difference (CMFD) 
solution scheme in MPACT [1], the deterministic transport solver in VERA. MPACT solves the 
multigroup three-dimensional full core neutron transport problem using the 2D/1D method, coupling 
together the 2D radial method of characteristics (MOC) and the 1D axial NEM-P3 solution using 
transverse leakage. The CMFD solver accelerates the overall convergence of the eigenvalue problem, and 
it also provides stability to the 2D/1D convergence. Typically, there is an MOC plane for each axial node, 
but the subplane method [2–3] allows solvers to be refined independently, and it also allows multiple 
axial nodes to exist within each MOC plane. Improving the performance of the CMFD solver is the focus 
of some effort, as it has come to take up a large component of the runtime as other components have been 
improved ( e.g., MOC [4], subgroup [5], and cross section processing).  
 
A multilevel-in-energy (MLE) CMFD method has been implemented in MPACT [6]. It was formulated by 
recursively applying the CMFD equations on progressively coarser energy grids. This can have various 
numbers of levels, with the coarsest energy grid being two groups. This method showed improvement 
over single level CMFD. A multilevel-in-space (MLS) CMFD method was also added, with spatial 
coarsening defined by quarter assembly-collapse and subplane collapse on successive levels [7–9]. 
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This paper presents a new multilevel-in-space-and-energy (MLS&E) solver for accelerating the CMFD 
solution in MPACT. This method combines the previously mentioned MLE and MLS CMFD capabilities 
by performing coarsening in both energy and space on each level. The accuracy and performance of these 
new multilevel solvers in various combinations is compared for target problems of interest to CASL. The 
combined MLS&E CMFD solver can reduce runtime compared to power iterations and the solvers with 
MLE or MLS individually. The paper will also investigate more complex variations of the multigrid 
cycles in order to further improve the efficiency of each of these multilevel solvers. These variations 
include performing W-cycles and partial W-cycles for cases in which the post-sweep solves are skipped 
[10–13]. These cycles can potentially reduce the total solve time by reducing the number of outer 
iterations without significantly increasing the work in the CMFD solver. These multilevel CMFD solvers 
and multigrid cycles can improve the efficacy and reduce the computational time requirements of MPACT 
and VERA.  
 

2. MULTILEVEL CMFD METHODS 
 
 
2.1.  Multilevel in Space+Energy CMFD 
 
An MLS&E CMFD method was developed by combining the mechanisms of both the MLS and MLE 
CMFD methods. Coarsening is performed in both space and energy on each level. For MLE CMFD, the 
default number of levels is three as that is the most effective structure for most cases. The MLS CMFD is 
also broken down into three levels, as shown in Figure 1. Level 1 is the original CMFD mesh, which is 
pin homogenized radially, and the nodal discretization is homogenized axially. Level 2 is coarsened by 
collapsing radially to quarter assemblies. Level 3 is the coarsest level, with the quarter assembly collapsed 
radially and subplane regions collapsed axially if subplanes are used in the model. The MLS&E CMFD 
coarsens in both space and energy on each level. Thus, the finest grid on Level 1 is the original energy 
grid and the pin-homogenized spatial mesh. The coarsest grid on Level 3 is 2 energy groups, along with a 
subplane and a quarter assembly collapsed mesh.  
  

 
 

Figure 1.  Spatial collapse for MLS CMFD. 
 
The MLS&E CMFD equations are solved using the same algorithm that is used for the MLE and MLS 
CMFD. The hierarchy of CMFD equations is solved with a single V-Cycle on each outer iteration. The V-
Cycle is illustrated on three levels by the first cycle in Figure 1. The spatial restriction is performed 
usinga typical CMFD flux-volume homogenization. Restriction in space is done with a similar flux-
energy homenization. On each level except the coarsest, a pre-sweep is performed in the form of a fixed 
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source solve. The eigenvalue problem is solved on the coarsest level. A fixed source problem is again 
solved on all but the coarsest level as a post-sweep using the updated fission source. 
 
2.2.  Multigrid Cycles 
 
A new variation of this method was developed by using W-Cycles on each outer iteration. A W-Cycle 
with two multigrid iterations is shown in Figure 2. This type of cycle gives a more tightly converged 
CMFD solution which can accelerate the outer iterations. Another multigrid iteration scheme that was 
investigated was partial V-Cycles (pV-Cycle) [8]. This cycle is similar to the standard V-Cycle, except 
that the post-sweep fixed source problem is skipped. The solution from the eigenvalue problem and fixed 
source pre-sweep problems is still used to update the fine mesh solution, but without the additional post-
sweeps. This approach can also be applied to W-Cycle to create partial W-Cycles (pW-Cycles). Using 
these pV- and pW-Cycles can reduce the number of fixed-source CMFD problems that need to be solved 
while still solving the eigenvalue problem. A pV-Cycle and a pW-Cycle with two multigrid iterations are 
show in Figure 2. 
 

 
Figure 2.  Multigrid Cycles for three levels. 

 
 
 

3. RESULTS 
 
The performance of these multilevel CMFD methods was tested on VERA Progression Problems [14]. 
Problem 5 consists of a Watts Bar Nuclear Unit 1 full core with Westinghouse 17×17-type fuel assemblies 
depicted in Figure 3. Problem 9 is the same reactor configuration as Problem 5, but with Cycle 1 
depletion. 
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Figure 3. Problem 5 core layout. 

 
Table I compares the performance of the multilevel methods for Progression Problem 5 run on 406 cores. 
The first two columns indicate the type of multilevel method and the number of groups on each energy 
grid. The first row is the standard CMFD method. The third column indicates the number of transport 
outer iterations. The next two columns give the total time to solve the problem and the total time spent in 
the CMFD solver. The last two columns give the total speedup and the speedup in the CMFD problem 
compared to the standard CMFD solver. On each outer iteration the standard CMFD solver iterates on the 
CMFD problem until the residual is reduced by two orders of magnitude. The MLCMFD solvers simply 
perform a single V-cycle on each outer iteration. It can be seen that both the MLE and MLS CMFD 
solvers significantly reduce the number of outer iterations and the CMFD time compared to the standard 
CMFD, thus reducing the total time by about half. This indicates that the MLCMFD solvers do a better 
job reducing the error in the CMFD problem and require less work than the standard CMFD. The 
MLS&E CMFD also reduces the CMFD time, as well as further reducing the number of outer iterations, 
resulting in the fastest run time. Figure 4 plots the convergence of the fission source for the various 
CMFD solvers. It can be seen that the standard CMFD solver quickly reaches a slow converging error 
mode. The multilevel CMFD solvers have much faster convergence rates, with MLS&E CMFD 
converging the fastest. 
 
 
 

Table	I.	Problem	5	runtime.	

Multilevel	
collapse	

Energy	
grids	

Outer	
iterations	

Total	Time	
[min]	

CMFD	
time	[min]	

Total	
speedup	

CMFD	
speedup	

None	 {51}	 20	 45.65	 20.68	 -	 -	
Energy	 {51,10,2}	 12	 21.82	 10.50	 2.09	 1.97	
Space	 {51,51,51}	 12	 20.40	 8.18	 2.24	 2.53	

Space	&	energy	 {51,10,2}	 11	 19.52	 7.98	 2.34	 2.59	
 

 
 

Figure 4. Convergence behavior of fission source for the CMFD solvers for Problem 5. 
 
Table II compares the performance of the methods for Problem 9 run on 464 processors. Here again the 
MLE and MLS CMFD reduce the number of outer iterations and the CMFD time. The MLS&E has the 
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fewest outer iterations and the shortest CMFD time, making it the fastest running method. Figure 5 shows 
the runtime for each depletion statepoint for Problem 9 Watts Bar Cycle 1 with 32 statepoints and 441 
effective full power days of depletion. The MLS&E CMFD solver has the shortest runtime for the 
majority of the statepoints, even when the standard CMFD solver slows down on the later states. 
 

Table	II.	Problem	9	runtime.	

Multilevel	
collapse	

Energy	
grids	

Outer	
iterations	

Total	
time	[hr]	

CMFD	
time	[hr]	

Total	
speedup	

CMFD	
speedup	

None	 {51}	 876	 59.07	 12.16	 -	 -	
Energy	 {51,10,2}	 605	 37.67	 6.31	 1.57	 1.93	
Space	 {51,51,51}	 525	 35.62	 5.14	 1.66	 2.37	

Space	&	energy	 {51,10,2}	 514	 34.68	 4.91	 1.70	 2.48	
 

 
Figure 5. Time per depletion state point p9 Cycle 1. 

 
The behaviors of the MLE CMFD solver with V-Cycles, W-Cycles, and partial W-Cycles are 
demonstrated in Tables III and IV. The runtime for W-Cycles are shown in Table III for 2–4 energy 
levels, and the results with standard V-Cycles are included for comparison. Using the W-Cycles reduces 
the number of outer iterations, but it also increases the CMFD time per iteration. The effect of the W-
Cycles is most noticeable for the cases with two energy levels since it has the fewest number of levels in 
which the CMFD equations are solved. Although the W-Cycles did reduce the number of outer iterations, 
the increase in the CMFD work meant that they did not reduce the total run time compared to V-Cycles 
for this problem. 
 

Table	III.	Problem	5	MLE	CMFD	V-	and	W-Cycles	runtime.	

Number	
of	levels	

Energy	
grids	

Outer	
iterations	

Total	
time	
[min]	

CMFD	
time	
[min]	

Total	
speedup	

CMFD	
speedup	

V-Cycle	
2	 {51,2}	 13	 22.78	 10.15	 2.00	 2.04	
3	 {51,10,2}	 12	 21.82	 10.50	 2.09	 1.97	
4	 {51,17,6,2}	 12	 22.38	 11.47	 2.04	 1.80	

W-Cycle	with	2	multigrid	iterations	
2	 {51,2}	 11	 32.68	 28.37	 1.40	 0.73	
3	 {51,10,2}	 11	 29.70	 23.68	 1.54	 0.87	
4	 {51,17,6,2}	 11	 28.83	 22.40	 1.58	 0.92	
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W-Cycle	with	3	multigrid	iterations	
2	 {51,2}	 11	 31.38	 25.28	 1.45	 0.82	
3	 {51,10,2}	 11	 31.70	 26.50	 1.44	 0.78	
4	 {51,17,6,2}	 11	 39.23	 40.48	 1.16	 0.51	

 
Table IV shows the runtime of pW-Cycles for MLE CMFD with pW-Cycles and 2–4 energy levels. The 
pV-Cycles did not work to converge the iterations for this problem. For MLE CMFD with two energy 
levels, the pW-Cycles have fewer outer iterations than the standard V-Cycles on two levels. However, for 
the pW-Cycles on three or four levels, there was no significant reduction in the number of outer iterations 
or the total runtime. 
 

Table	IV.	Problem	5	MLE	CMFD	with	partial	W-Cycles	runtime.	

Number	
of	levels	

Energy	
grids	

Outer	
iterations	

Total	
time	
[min]	

CMFD	
time	
[min]	

Total	
speedup	

CMFD	
speedup	

pW-Cycles	with	2	multigrid	iterations	
2	 {51,2}	 12	 25.73	 16.92	 1.77	 1.22	
3	 {51,10,2}	 12	 26.53	 18.08	 1.72	 1.14	
4	 {51,17,6,2}	 12	 23.55	 13.02	 1.94	 1.59	

pW-Cycles	with	3	multigrid	iterations	
2	 {51,2}	 12	 29.08	 23.30	 1.57	 0.89	
3	 {51,10,2}	 12	 25.50	 16.58	 1.79	 1.25	
4	 {51,17,6,2}	 13	 29.30	 21.07	 1.56	 0.98	

 
 
 
 
 
 

4. CONCLUSIONS 
 
A new MLS&E CMFD solver was developed in MPACT. This solver accelerates the outer iterations and 
reduces the work in the CMFD problem. The MLS&E CMFD solver took about half the runtime of 
standard CMFD and was shown to run faster than the standard CMFD and the MLE and MLS CMFD 
solvers separately. New multigrid iterative algorithms were investigated for the MLE CMFD solver. The 
W-Cycles reduced the number of outer iterations but did not consistently reduce the runtime. The pW-
Cycles also accelerated the outer iterations for some cases but did not give consistent runtime 
improvements. With these improvements, MPACT continues to aggressively address performance 
considerations, making it a more powerful, attractive tool for industry users. 
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