23 research outputs found

    Test Report : GS Battery, EPC power HES RESCU

    Get PDF
    The Department of Energy Office of Electricity (DOE/OE), Sandia National Laboratories (SNL) and the Base Camp Integration Lab (BCIL) partnered together to incorporate an energy storage system into a microgrid configured Forward Operating Base to reduce the fossil fuel consumption and to ultimately save lives. Energy storage vendors will be sending their systems to SNL Energy Storage Test Pad (ESTP) for functional testing and then to the BCIL for performance evaluation. The technologies that will be tested are electro-chemical energy storage systems comprising of lead acid, lithium-ion or zinc-bromide. GS Battery and EPC Power have developed an energy storage system that utilizes zinc-bromide flow batteries to save fuel on a military microgrid. This report contains the testing results and some limited analysis of performance of the GS Battery, EPC Power HES RESCU

    Venetie, Alaska energy assessment.

    Get PDF
    This report summarizes the Energy Assessment performed for Venetie, Alaska using the principals of an Energy Surety Microgrid (ESM) The report covers a brief overview of the principals of ESM, a site characterization of Venetie, a review of the consequence modeling, some preliminary recommendations, and a basic cost analysis

    Initial operating experience of the 12-MW La Ola photovoltaic system.

    Full text link
    The 1.2-MW La Ola photovoltaic (PV) power plant in Lanai, Hawaii, has been in operation since December 2009. The host system is a small island microgrid with peak load of 5 MW. Simulations conducted as part of the interconnection study concluded that unmitigated PV output ramps had the potential to negatively affect system frequency. Based on that study, the PV system was initially allowed to operate with output power limited to 50% of nameplate to reduce the potential for frequency instability due to PV variability. Based on the analysis of historical voltage, frequency, and power output data at 50% output level, the PV system has not significantly affected grid performance. However, it should be noted that the impact of PV variability on active and reactive power output of the nearby diesel generators was not evaluated. In summer 2011, an energy storage system was installed to counteract high ramp rates and allow the PV system to operate at rated output. The energy storage system was not fully operational at the time this report was written; therefore, analysis results do not address system performance with the battery system in place

    Electrical Components for Marine Renewable Energy Arrays: A Techno-Economic Review

    Get PDF
    This paper presents a review of the main electrical components that are expected to be present in marine renewable energy arrays. The review is put in context by appraising the current needs of the industry and identifying the key components required in both device and array-scale developments. For each component, electrical, mechanical and cost considerations are discussed; with quantitative data collected during the review made freely available for use by the community via an open access online repository. This data collection updates previous research and addresses gaps specific to emerging offshore technologies, such as marine and floating wind, and provides a comprehensive resource for the techno-economic assessment of offshore energy arrays

    Least cost microgrid resource planning for the natural energy laboratory of Hawaii authority Research Park

    No full text
    The Natural Energy Laboratory of Hawaii Authority\u27s (NELHA) campus on The Island of Hawai\u27i supplies resources for a number of renewable energy and aquaculture research projects. There is a growing interest at NELHA to convert the research campus to a 100% renewable, islanded microgrid to improve the resiliency of the campus for critical ocean water pumping loads and to limit the increase in the long-term cost of operations. Currently, the campus has solar array to cover some electricity needs but scaling up this system to fully meet the needs of the entire research campus will require significant changes and careful planning to minimize costs. This study will investigate least-cost solar and energy storage system sizes capable of meeting the needs of the campus. The campus is split into two major load centers that are electrically isolated and have different amounts of available land for solar installations. The value of adding an electrical transmission line if NELHA converts to a self-contained microgrid is explored by estimating the cost of resources for each load center individually and combined. Energy storage using lithium-ion and hydrogen-based technologies is investigated. For the hydrogen-based storage system, a variable efficiency and fixed efficiency representation of the electrolysis and fuel cell systems are used. Results using these two models show the importance of considering the changing performance of hydrogen systems for sizing algorithms

    Primary 13

    No full text

    Discrete logic vs optimized dispatch for energy storage in a microgrid

    No full text
    Forward operating base (FOB) microgrids typically use diesel generators with discrete logic control to supply power. However, emerging energy storage systems can be added as spinning reserves and to increase the PV hosting capacity of microgrids to significantly reduce diesel consumption if resources are controlled appropriately. Discrete logic controllers use if/else statements to determine resource dispatch based on inputs such as net load and generator run times but do not account for the capabilities of energy storage systems explicitly. Optimal dispatch controllers could improve upon this architecture by optimizing dispatch based on forecasts of load and generation. However, optimal dispatch controllers are far less intuitive, require more processing power, and the level of potential improvement is unclear.This work seeks to address three points with regards to FOB microgrid operations. Firstly, the impact of energy storage systems on the adoption of solar generation in microgrids is discussed. Secondly, logic is added to the typical discrete controller decision tree to account for energy storage resources. Lastly, fuel savings with energy storage and solar generation using the new discrete control logic and optimal dispatch are compared based on load data measured from a real FOB. The results of these analyses show the potential impact of energy storage on fuel consumption in FOBs and gives guidance as to the appropriate control architecture for management of integrated resource microgrids
    corecore